# TraceLens: Early Detection of Software Anomalies Using Critical Path Analysis

Masoumeh Nourollahi, Amir Haghshenas, Michel Dagenais École Polytechnique de Montréal ICPE 2025, Toronto, Canada

#### **Motivation & Problem Statement**

- Modern IoT, Edge, and Cloud systems evolve continuously and must run reliably
- Performance anomalies can cause serious degradation or failures
- Current trace-based methods are costly and lack real-time responsiveness
- We need a scalable, low-overhead approach for early anomaly detection.

## **Related Work**

Existing performance anomaly detection approaches:

- Static thresholds
- System call-based ML techniques

Recent methods, like LSTM models and clustering algorithms improved detection accuracy but are still limited by trace size and overhead.

Key limitations:

- Generation of large volumes of trace data
- Often used offline
- Lack adaptive real-time capability

# **Proposed Approach-** Deep learning-based anomaly detection using critical path analysis

- Focus on key execution sequences to minimize trace overhead
- Critical path shows runtime dependencies and bottlenecks
- This analysis enables efficient tracing and deep insight into performance anomalies



## LSTM Model Architecture & Training

- Extracted lightweight event data includes:
  - Critical path state count vector
  - Critical path state duration vector
- LSTM model processes state vectors over time windows



#### **Experiments and Results**

- Dataset
  - Experimental data created with web workload put on a flask application
  - Real world dataset
    - Noferesti, M. and Ezzati-Jivan, N., 2024. Enhancing empirical software performance engineering research with kernel-level events: A comprehensive system tracing approach. Journal of Systems and Software, 216, p.112117.

| DataSet | Number of<br>records | Vector size | Time<br>window |
|---------|----------------------|-------------|----------------|
| Train   | 4,847                | 28-ary      | 100 sec        |
| Test    | 1,212                | 28-ary      | 100 sec        |

#### **Experiments and Results**

Comparable accuracy to system call methods with minimal overhead.

| DataSet                                | Accuracy | Recall | Precision | Overhead | Data Size       | Train Time |
|----------------------------------------|----------|--------|-----------|----------|-----------------|------------|
| Critical path state count and duration | 90.24%   | 92.30% | 85.97%    | 5.59%    | 280.3 KB        | 35.92s     |
| System call count and duration         | 91.46%   | 89.12% | 84.33%    | 25.92%   | 576491.01<br>KB | 3952.3s    |

# **Experiment Outcomes & Anomaly Detection**

The additional performance degradations detected may be due to data augmentation used to generate more training samples.



# Anomaly detection using prediction loss

t-SNE projection shows effective separation of normal and anomalous states.



#### **Discussion & Implications**

- Reduced trace size and tracing overhead compared to system-call based methods
- Ideal for real-time large-scale systems:
- Critical path-based approach enhances root cause analysis
- Potential for adaptive tracing and improved tracing efficiency

# **Conclusions & Future Work**

TraceLens provides an efficient and scalable method for early anomaly detection through critical path analysis.

Future Work:

- Exploring other ML models and dataset
- Expand to IoT and resource-constrained environments
- Implement adaptive tracing across layers and nodes