
TraceLens: Early Detection of 
Software Anomalies Using 

Critical Path Analysis

Masoumeh Nourollahi, Amir Haghshenas, Michel Dagenais

École Polytechnique de Montréal

ICPE 2025, Toronto, Canada



Motivation & Problem Statement

• Modern IoT, Edge, and Cloud systems evolve continuously and must

run reliably

• Performance anomalies can cause serious degradation or failures

• Current trace-based methods are costly and lack real-time

responsiveness

• We need a scalable, low-overhead approach for early anomaly

detection.

2/11



Related Work

Existing performance anomaly detection approaches:
• Static thresholds

• System call-based ML techniques

Recent methods, like LSTM models and clustering algorithms improved 
detection accuracy but are still limited by trace size and overhead.

Key limitations:
• Generation of large volumes of trace data 

• Often used offline

• Lack adaptive real-time capability

3/11



Proposed Approach- Deep learning-based anomaly 
detection using critical path analysis

4/11

• Focus on key execution sequences to minimize trace overhead

• Critical path shows runtime dependencies and bottlenecks

• This analysis enables efficient tracing and deep insight into 
performance anomalies



LSTM Model Architecture & Training

• Extracted lightweight event data includes:
• Critical path state count vector

• Critical path state duration vector

• LSTM model processes state vectors over time windows

5/11



Experiments and Results

• Dataset
• Experimental data created with web workload put on a flask 

application

• Real world dataset
• Noferesti, M. and Ezzati-Jivan, N., 2024. Enhancing empirical software 

performance engineering research with kernel-level events: A comprehensive 
system tracing approach. Journal of Systems and Software, 216, p.112117.

6/11

DataSet Number of 
records

Vector size Time 
window

Train 4,847 28-ary 100 sec

Test 1,212 28-ary 100 sec



Experiments and Results

Comparable accuracy to system call methods with minimal overhead.

7/11

DataSet Accuracy Recall Precision Overhead Data Size Train Time

Critical path state count and 
duration 

90.24% 92.30% 85.97% 5.59% 280.3 KB 35.92s

System call count and 
duration 

91.46% 89.12% 84.33% 25.92% 576491.01 
KB 

3952.3s



Experiment Outcomes & Anomaly Detection

The additional performance degradations detected may be due to data 
augmentation used to generate more training samples.

8/11



Anomaly detection using prediction loss

t-SNE projection shows effective separation of normal and anomalous 
states.

9/11



Discussion & Implications

• Reduced trace size and tracing overhead compared to 

system-call based methods

• Ideal for real-time large-scale systems:

• Critical path-based approach enhances root cause analysis

• Potential for adaptive tracing and improved tracing 

efficiency

10/11



Conclusions & Future Work

TraceLens provides an efficient and scalable method for early anomaly 
detection through critical path analysis.

Future Work:

• Exploring other ML models and dataset

• Expand to IoT and resource-constrained environments

• Implement adaptive tracing across layers and nodes

11/11


	Slide 1: TraceLens: Early Detection of Software Anomalies Using Critical Path Analysis
	Slide 2: Motivation & Problem Statement
	Slide 3: Related Work
	Slide 4: Proposed Approach- Deep learning-based anomaly detection using critical path analysis
	Slide 5: LSTM Model Architecture & Training
	Slide 6: Experiments and Results
	Slide 7: Experiments and Results
	Slide 8: Experiment Outcomes & Anomaly Detection
	Slide 9: Anomaly detection using prediction loss
	Slide 10: Discussion & Implications
	Slide 11: Conclusions & Future Work

