)
AMon
S

AddressMonitor (AMon)

Low-overhead Spatial and Temporal Memory Safety for C

Farzam Dorostkar

DORSAL
Polytechnique Montréal

Progress Report Meeting, May 2025

Introduction
Detection Capabilities

e AddressMonitor (AMon) detects heap spatial and temporal violations at
runtime

o Out-of-bounds access
Use-after-free
Double-free

Memory leak

[¢]

[e]

o

e AMon is also capable of detecting additional unsafe practices
o Reading uninitialized memory
o Passing non-base pointers to free or realloc

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 2/18

Introduction
Design

¢ AMon is based on pointer tainting and compile-time code transformation
o Runtime library (libamon.so)
o Compiler pass (compiler dependent)

* AMon is designed to have minimal memory overhead
o Specifically compared to AddressSanitizer (ASan)

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 3/18

Pointer Tainting
Object-specific Analysis

e When allocating a heap object
o Assign a unique taint (ID) to each allocated object
o Maintain an object table [taint, base address, size, temporal status]
o Most architectures have unused address bits
® For instance, the first 2 bytes are unused on most 64-bit architectures

o Embed the taint into the unused bits (pointer tainting)

e When dereferencing a tainted pointer
o Retrieve the taint
o Use the taint to verify the access against the object table
o Dereferencing a tainted pointer causes segmentation fault (Requires pointer
untainting)

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 4/18

AMon in Action

Detecting a Buffer Overflow
object table

index base address size |temporal status|stack trace
0x00005b49425332a0| 4 ALLOCATED #0 foo+0x19

overflow.c

bar (int *ptr) { ' libamon.so
(ptr + 1) = 2025; / overflow! */

.
|

|
| & |
'} ! 1 void *res; !
3 ! ' res = __libc_malloc (size); /* res = 0x00005b49425332a0 */ / |
"foo () { | | amon_protect (res); /* res = Ox 5b49425332a0 */ 3
3 int *ptr; 3 3 objtbl_add (res, size); /* add to the object table */ !
' ptr = (int*)malloc(sizeof(int)); | | return res; /* return the tainted pointer */3
. bar (ptr); 3 i} 77 !
'} !

Pointer Tainting and Object Table Population

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 5/18

AMon in Action
Detecting a Buffer Overflow

object table

overflow.c index base address size |temporal status|stack trace
0x00005b49425332a0| 4 ALLOCATED #0 foo+0x19

+ amon_write ((void*) (ptr + 1), 4);
+ int *uptr = (ptr + 1) & UNTAINT_MASK;
+ *uptr = 2025;

- *(ptr + 1) = 2025; /x overflow! */ | !void amon_write (void *tptr, size_t size) {
¥ uintptr_t taint = tptr » 48; /* taint = */
uintptr_t base = tptr & UNTAINT_MASK; /* base = 0x00005b49425332a4 */
foo O {
int *ptr;

ptr = (int*)malloc(sizeof (int));
base + size < objtbl[taint].base + objtbl[taint].size

bar (ptr);
? : report_spatial_violation(); X

|
|

|

|

! I
! |
| objtbl[taint].temp == ALLOCATED ? : report_temporal_violation (); v

|

! base < objtbl[taint].base &&

! I
! I
! I
! I
! I

Runtime Verification and Pointer Untainting

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 6/18

AMon in Action object table

H index base address size |[temporal status|stack trace
DeteCtI ng a BUffer Ove rﬂOW 0x00005b49425332a0| 4 ALLOCATED #0 foo+0x19
e)
overflow.c stderr
1Bafi(ihfi;ﬁff5'1 777777777777777777777777 ERROR: AddressMonitor: heap-buffer-overflow on address 0x5b49425332a4

+ amon_write ((voidx)(ptr + 1), 4);

+ int *uptr = (ptr + 1) & UNTAINT_MASK;
+ *uptr = 2025;

(ptr + 1) = 2025; / overflow! */

» Violating access: write of size 4 at 0x5b49425332a4
[The call stack at the point of violation]

#0 overflow_amon(bar+0x35)

} #1 overflow_amon(foo+0x27)
#2 ...
foo () {
int *ptr; » Intended object bounds: 4-byte region [0x5b49425332a0,0x5b49425332a4)

[The stack trace at the point of heap allocation]
#0 overflow_amon(foo+0x19)

#1 ...

ptr = (int*)malloc(sizeof (int));
bar (ptr);

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 7118

AMon LLVM Compiler Pass

Objectives

e Code analysis
o Detect heap pointers

e Code transformation

o Instrument code with untainting logic at compile-time
o Insert runtime checks

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar

8/18

AMon LLVM Compiler Pass: Updates
Pointer Flow Analysis in LLVM IR

e Starts by constructing an initial set of original heap pointers
o Pointers returned from standard heap allocation functions (malloc family)
o Function arguments of pointer type
o Pointers returned from function calls
o Module-level global variables storing pointers

¢ Performs data-flow analysis to identify all derived heap pointers - tracks the
propagation of original heap pointers
o Pointer arithmetic
Type casting
Control-flow merges
Indirect propagation through memory access
® When a tainted pointer is stored in memory and later read

@]

@]

@]

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 9/18

AMon LLVM Compiler Pass: Updates

Untainting Heap Pointers

e |dentifies all IR instructions that perform memory access
o Memory access operations (such as load, store, and cmpxchg)
o Memory-related intrinsics (such as 11vm.memcpy and 11lvm.memset)

e Untaints dereferenced heap pointer(s)
o Extracts the pointer operand(s)
Checks if the pointer belongs to the set of identified heap pointers
If so, generates an untainted version of the pointer using 11vm.ptrmask intrinsic

Replaces the pointer in the current instruction with the untainted version using the
setOperand method

o

o

o

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 10/18

AMon LLVM Compiler Pass: Updates

Inlined Temporal and Spatial Checks

e AMon now supports inlining runtime checks directly into the instrumented code
o Eliminating the need for function calls to 1ibamon (amon_read and amon_write)
o Reduced runtime overhead
o Slightly larger executables

S
55?." AMon
&

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 11/18

Industrial Test
Evaluated by Ericsson

e AMon has been tested by a group of developers at Ericsson (Austin branch)

o Dedicated 32-bit architecture (where unused address bits are available)
o Dedicated memory layout

e Successfully integrated AMon into their computing environment with minimal
modification

o ~ 40 LOC in the compiler pass
o ~ 200 LOC in the runtime library

* They have conducted initial tests on small cases
e AMon detected memory issues in their test cases AD
o Detected out-of-bounds accesses and uses of uninitialized memory AMon
>

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 12/18

Performance Analysis
SPEC CPU 2017 Benchmarks - Reference Workloads

Native ASan EffectiveSan AMon
Benchmark

Time (sec) MRSS (MB) Time (sec) MRSS (MB) Time (sec) MRSS (MB) Time (sec) MRSS
505.mcf 232.4 623.7 285.3 (22.8%) 919.8(47.5%) 508.3(118.8%) 624.8(0.2%) 370.6(59.4%) 660.0 (5.8%)
519.lbm 123.5 420.3 128.3(3.9%) 476.8(13.4%) 198.1 (60.4%) 420.8(0.1%) 221.0(78.9%) 420.8(0.1%)
544.nab 247.6 149.7 290.4 (17.3%) 540.8 (261.2%) 332.3(34.2%) 163.4(9.2%) 257.5(3.9%) 164.4 (9.8%)
538.imagick 256.9 293.0 423.8 (64.9 %) 823.8(181.2%) 561.9(118.7%) 296.9 (1.3%) 535.2(108.3%) 296.5 (1.2 %))
557.xz 245.6 794.1 327.3(33.3%) 1051.0(32.4%) 384.3(56.5%) 794.3(~0%) 368.8(50.1%) 794.7 (~0%)

Average Overhead 28.5% 107.2% 77.8 % 22% 60.1 % 3.4 %

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 13/18

MY ONE-WEEK VISIT TO CIENA

GCC Proof of Concept for AMon

Organized by Mohammad and Francgois
Goal: Implement a GCC-based proof of

concept for AMon

Gained first exposure to GCC internals,

including GIMPLE passes and
instrumentation workflow

Implemented an initial prototype!

Passenger:

AMon

ST SRS,

Route: « :
Montréal — Ottawa N oF

e

Departure:
Polytechmque Montréal

S

Arrival: Ciena =

RUNTIME-SAFE

AD
"'As AMon

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 14/18

GIMPLE Intermediate Representation
Quick Introduction

e GIMPLE is an intermediate representation used for target- and
language-independent optimizations and instrumentation (e.g. ASan)

e Static Single Assignment (SSA) form, which facilitates data-flow analysis

¢ GIMPLE passes plug into GCC Middle-End and are applied in a predefined order

ASID
H 5‘."." AMon

&

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 15/18

AMon GCC Compiler Pass
Initial Prototype

® Register the Pass
o Defined as a gimple_opt_pass
Walk Through the Code
o lterates over functions, basic blocks, and GIMPLE statements
Detect Simple Memory Accesses
o ldentifies loads (gimple_assign_load_p) and stores (gimple_store_p)
o Extracts pointer operand and access size
Untaint the Pointer
o Casts to 64-bit int
o Masks taint bits
o Casts back to original pointer type
o Replaces the pointer operand
Insert Runtime Checks
o amon_read Or amon_write call to 1ibamon

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 16/18

DEMO TIME

And yes, it is the GCC variant of AMon!

)
X)
(X2 AMon

&

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 17/18

Thanks!

Questions? Comments?

¥ farzam.dorostkar@{polymtl.ca, gmail.com}
© github.com/farzamdorostkar
& farzamdorostkar.github.io

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C — Farzam Dorostkar 18/18

https://github.com/farzamdorostkar
https://farzamdorostkar.github.io

	INTRODUCTION
	Detection Capabilities
	Design

	Section 1
	Subsection 1

	AMon in Action
	Spatial Safety

