
AddressMonitor (AMon)
Low-overhead Spatial and Temporal Memory Safety for C

Farzam Dorostkar
DORSAL
Polytechnique Montréal

Progress Report Meeting, May 2025



Introduction
Detection Capabilities

• AddressMonitor (AMon) detects heap spatial and temporal violations at
runtime

◦ Out-of-bounds access
◦ Use-after-free
◦ Double-free
◦ Memory leak

• AMon is also capable of detecting additional unsafe practices
◦ Reading uninitialized memory
◦ Passing non-base pointers to free or realloc

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 2/18



Introduction
Design

• AMon is based on pointer tainting and compile-time code transformation
◦ Runtime library (libamon.so)
◦ Compiler pass (compiler dependent)

• AMon is designed to have minimal memory overhead
◦ Specifically compared to AddressSanitizer (ASan)

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 3/18



Pointer Tainting
Object-specific Analysis

• When allocating a heap object
◦ Assign a unique taint (ID) to each allocated object
◦ Maintain an object table [taint, base address, size, temporal status]
◦ Most architectures have unused address bits

• For instance, the first 2 bytes are unused on most 64-bit architectures

◦ Embed the taint into the unused bits (pointer tainting)

• When dereferencing a tainted pointer
◦ Retrieve the taint
◦ Use the taint to verify the access against the object table
◦ Dereferencing a tainted pointer causes segmentation fault (Requires pointer

untainting)

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 4/18



AMon in Action
Detecting a Buffer Overflow

overflow.c
bar (int *ptr) {

*(ptr + 1) = 2025; /* overflow! */

}

foo () {
int *ptr;
ptr = (int*)malloc(sizeof(int));
bar (ptr);

}

libamon.so
void* malloc (size_t size) {

void *res;
res = __libc_malloc (size); /* res = 0x00005b49425332a0 */
amon_protect (res); /* res = 0x00015b49425332a0 */
objtbl_add (res, size); /* add to the object table */
return res; /* return the tainted pointer */

}

object table
index
0x0001

base address
0x00005b49425332a0

size
4

temporal status
ALLOCATED

stack trace
#0 foo+0x19

Pointer Tainting and Object Table Population

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 5/18



AMon in Action
Detecting a Buffer Overflow

overflow.c
bar (int *ptr) {

+ amon_write ((void*)(ptr + 1), 4);
+ int *uptr = (ptr + 1) & UNTAINT_MASK;
+ *uptr = 2025;
- *(ptr + 1) = 2025; /* overflow! */

}

foo () {
int *ptr;
ptr = (int*)malloc(sizeof(int));
bar (ptr);

}

libamon.so
void amon_write (void *tptr, size_t size) {

uintptr_t taint = tptr » 48; /* taint = 0x0001 */
uintptr_t base = tptr & UNTAINT_MASK; /* base = 0x00005b49425332a4 */

objtbl[taint].temp == ALLOCATED ? : report_temporal_violation (); ✓
base < objtbl[taint].base &&
base + size < objtbl[taint].base + objtbl[taint].size

? : report_spatial_violation(); 7

}

object table
index
0x0001

base address
0x00005b49425332a0

size
4

temporal status
ALLOCATED

stack trace
#0 foo+0x19

Runtime Verification and Pointer Untainting

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 6/18



AMon in Action
Detecting a Buffer Overflow

overflow.c
bar (int *ptr) {

+ amon_write ((void*)(ptr + 1), 4);
+ int *uptr = (ptr + 1) & UNTAINT_MASK;
+ *uptr = 2025;
- *(ptr + 1) = 2025; /* overflow! */

}

foo () {
int *ptr;
ptr = (int*)malloc(sizeof(int));
bar (ptr);

}

stderr
ERROR: AddressMonitor: heap-buffer-overflow on address 0x5b49425332a4

» Violating access: write of size 4 at 0x5b49425332a4
[The call stack at the point of violation]
#0 overflow_amon(bar+0x35)
#1 overflow_amon(foo+0x27)

#2 ...

» Intended object bounds: 4-byte region [0x5b49425332a0,0x5b49425332a4)
[The stack trace at the point of heap allocation]
#0 overflow_amon(foo+0x19)

#1 ...

object table
index
0x0001

base address
0x00005b49425332a0

size
4

temporal status
ALLOCATED

stack trace
#0 foo+0x19

Error report generated by AMon upon detecting an out-of-bounds access

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 7/18



AMon LLVM Compiler Pass
Objectives

• Code analysis
◦ Detect heap pointers

• Code transformation
◦ Instrument code with untainting logic at compile-time
◦ Insert runtime checks

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 8/18



AMon LLVM Compiler Pass: Updates
Pointer Flow Analysis in LLVM IR

• Starts by constructing an initial set of original heap pointers
◦ Pointers returned from standard heap allocation functions (malloc family)
◦ Function arguments of pointer type
◦ Pointers returned from function calls
◦ Module-level global variables storing pointers

• Performs data-flow analysis to identify all derived heap pointers - tracks the
propagation of original heap pointers

◦ Pointer arithmetic
◦ Type casting
◦ Control-flow merges
◦ Indirect propagation through memory access

• When a tainted pointer is stored in memory and later read

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 9/18



AMon LLVM Compiler Pass: Updates
Untainting Heap Pointers

• Identifies all IR instructions that perform memory access
◦ Memory access operations (such as load, store, and cmpxchg)
◦ Memory-related intrinsics (such as llvm.memcpy and llvm.memset)

• Untaints dereferenced heap pointer(s)
◦ Extracts the pointer operand(s)
◦ Checks if the pointer belongs to the set of identified heap pointers
◦ If so, generates an untainted version of the pointer using llvm.ptrmask intrinsic
◦ Replaces the pointer in the current instruction with the untainted version using the

setOperand method

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 10/18



AMon LLVM Compiler Pass: Updates
Inlined Temporal and Spatial Checks

• AMon now supports inlining runtime checks directly into the instrumented code

◦ Eliminating the need for function calls to libamon (amon_read and amon_write)
◦ Reduced runtime overhead
◦ Slightly larger executables

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 11/18



Industrial Test
Evaluated by Ericsson

• AMon has been tested by a group of developers at Ericsson (Austin branch)
◦ Dedicated 32-bit architecture (where unused address bits are available)
◦ Dedicated memory layout

• Successfully integrated AMon into their computing environment with minimal
modification

◦ ∼ 40 LOC in the compiler pass
◦ ∼ 200 LOC in the runtime library

• They have conducted initial tests on small cases

• AMon detected memory issues in their test cases
◦ Detected out-of-bounds accesses and uses of uninitialized memory

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 12/18



Performance Analysis
SPEC CPU 2017 Benchmarks - Reference Workloads

Benchmark
Native ASan EffectiveSan AMon

Time (sec) MRSS (MB) Time (sec) MRSS (MB) Time (sec) MRSS (MB) Time (sec) MRSS

505.mcf 232.4 623.7 285.3 (22.8 %) 919.8 (47.5 %) 508.3 (118.8 %) 624.8 (0.2 %) 370.6 (59.4%) 660.0 (5.8%)

519.lbm 123.5 420.3 128.3 (3.9 %) 476.8 (13.4 %) 198.1 (60.4 %) 420.8 (0.1 %) 221.0 (78.9%) 420.8 (0.1%)

544.nab 247.6 149.7 290.4 (17.3 %) 540.8 (261.2 %) 332.3 (34.2 %) 163.4 (9.2 %) 257.5 (3.9%) 164.4 (9.8%)

538.imagick 256.9 293.0 423.8 (64.9 %) 823.8 (181.2 %) 561.9 (118.7 %) 296.9 (1.3 %) 535.2 (108.3%) 296.5 (1.2 %))

557.xz 245.6 794.1 327.3 (33.3 %) 1051.0 (32.4 %) 384.3 (56.5 %) 794.3 (≈ 0%) 368.8 (50.1%) 794.7 (≈ 0%)

Average Overhead 28.5 % 107.2 % 77.8 % 2.2 % 60.1 % 3.4 %

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 13/18



MY ONE-WEEK VISIT TO CIENA
GCC Proof of Concept for AMon

• Organized by Mohammad and François

• Goal: Implement a GCC-based proof of
concept for AMon

• Gained first exposure to GCC internals,
including GIMPLE passes and
instrumentation workflow

• Implemented an initial prototype!

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 14/18



GIMPLE Intermediate Representation
Quick Introduction

• GIMPLE is an intermediate representation used for target- and
language-independent optimizations and instrumentation (e.g. ASan)

• Static Single Assignment (SSA) form, which facilitates data-flow analysis

• GIMPLE passes plug into GCC Middle-End and are applied in a predefined order

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 15/18



AMon GCC Compiler Pass
Initial Prototype

• Register the Pass
◦ Defined as a gimple_opt_pass

• Walk Through the Code
◦ Iterates over functions, basic blocks, and GIMPLE statements

• Detect Simple Memory Accesses
◦ Identifies loads (gimple_assign_load_p) and stores (gimple_store_p)
◦ Extracts pointer operand and access size

• Untaint the Pointer
◦ Casts to 64-bit int
◦ Masks taint bits
◦ Casts back to original pointer type
◦ Replaces the pointer operand

• Insert Runtime Checks
◦ amon_read or amon_write call to libamon

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 16/18



DEMO TIME

And yes, it is the GCC variant of AMon!

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 17/18



Thanks!
Questions? Comments?

farzam.dorostkar@{polymtl.ca, gmail.com}
github.com/farzamdorostkar
farzamdorostkar.github.io

AddressMonitor (AMon): Low-overhead Spatial and Temporal Memory Safety for C – Farzam Dorostkar 18/18

https://github.com/farzamdorostkar
https://farzamdorostkar.github.io

	INTRODUCTION
	Detection Capabilities
	Design

	Section 1
	Subsection 1

	AMon in Action
	Spatial Safety


