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 Previous Work

 Memory access validation techniques

 —   Redzones, shadow memory, and pointer tainting

 Beyond Datawatch 

 Future Work
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● Integrated DPDK mempool analyses into Trace Compass Incubator

● Submitted an article to Runtime Verification conference.
A. Belkhiri, A. Fiorini, M. Khouzam and H. Lee, A Transparent and Efficient 
Performance Analysis Approach to Enhance DPDK Observability,  Runtime Verification, 
Austria, 2025.

Previous Work 
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● Low-level languages like C/C++ lack automatic memory management, 
leading to many issues related to memory accesses 

— Out-of-band
—  Use after free
—  Use before initialization
—  Memory Leak
—  Etc.

Memory Access Validation 
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Red zones and shadow memory 
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Pointer tainting (1) 

● Embeds metadata (e.g., an object-ID) in the top 2 bytes of a 64-bit pointer (x86-64) to 
enable memory access validation at runtime

● How it works?

1)   Heap allocator returns a tainted pointer.

2)   When the pointer is dereferenced the CPU flags the non‑canonical address, 
triggering SIGSEGV/SIGBUS.

3)  The signal handler:

a)  Removes the taint,

b)  Validates the access against shadow metadata,

    c)  Executes the access instruction with the untainted pointer

d)  Re‑applies the taint, and resumes execution.
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Pointer tainting (2)  — Tools 

● Valgrind Memcheck = 20x to 50x slowdown
● Addess Sanitizer (ASan) = 2x to 3x slowdown
● Address Monitor (AMon)

● Inserts taint/untaint code at compile time via custom LLVM passes.
● Advantages / Limitations:

+  Low runtime overhead.

+  Efficient for source-available code.

–  Requires recompilation and full access to the source.
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Pointer tainting (3)  — Tools 

● Beyond DataWatch

● Jason Puncher developed Datawatch at Ciena to detect 
invalid memory accesses (for 32-bit applications - PowerPC)

● Olivier Dion developed Libpatch to dynamically instrument 
applications with pre and post handlers around target 
instructions

● David Piché prototyped tainted pointers for user-level x86-
64 applications with MallocSan, using different methods, 
including ptrace and Libpatch
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Pointer tainting (4)  — Tools 

● MallocSan

● Advantages / Limitations:

+  No recompilation required

+  Supports on-the-fly, selective protection (e.g., per object or allocation site)

–  Slightly higher cost due to first-hit patching and thread synchronization

   –  Wrapping all glibc syscalls is complicated, which may introduce  blind spots



POLYTECHNIQUE MONTREAL – Adel Belkhiri 10

Possible Optimization — MallocSan

● Libpatch cannot presently instrument and place pre and post handlers on every 
possible instruction:

● For short instructions (less than 5 bytes) the post handler is not called directly 
after the target instruction

● It is not possible to instrument two consecutive short instructions

● For branching instructions, the post handler cannot be called

➔ Consequently, MallocSan must often fall back on using the much slower trap-
based instrumentation

Examples of short instructions

mov al, [rax]      ;  Load (2 bytes)
mov [rax], al      ;  Store (2 bytes)  
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Possible Optimization — MallocSan

● Remove redundant untaint/check/retaint: 
● For two consecutive accesses to the same memory region (with same size), 

untaint/check/retaint only once
● If the untainted register is not reused (quickly overwritten), avoid retainting

● Examples: 

int *ptr = malloc(4)
*ptr = 42;    // write to the address pointed by the pointer
int val = *ptr;  // read from the same address and same size

int *ptr = malloc(4)
For (int i = 0; i < 19; i++) {
       *ptr = i;  // writing to the same address repeatedly
}
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●   Dynamic instrumentation enables memory access validation without 
recompilation, while allowing selective and targeted checks

●   Next Steps:

●    Extend Libpatch to support finer-grained jump-based patching

●    Enhance MallocSan: improve coverage & reduce runtime overhead 

Future Work
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We welcome all 
suggestions 

and feedback!
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Questions?
adel.belkhiri@polymtl.ca
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