
Runtime Memory Access Validation Runtime Memory Access Validation
Using Dynamic InstrumentationUsing Dynamic Instrumentation

Adel BelkhiriAdel Belkhiri

May 12, 2025May 12, 2025

 Polytechnique Montréal

DORSAL Laboratory

POLYTECHNIQUE MONTREAL – Adel Belkhiri

 Previous Work

 Memory access validation techniques

 — Redzones, shadow memory, and pointer tainting

 Beyond Datawatch

 Future Work

2

Agenda

1

2

3

4

POLYTECHNIQUE MONTREAL – Adel Belkhiri 3

● Integrated DPDK mempool analyses into Trace Compass Incubator

● Submitted an article to Runtime Verification conference.
A. Belkhiri, A. Fiorini, M. Khouzam and H. Lee, A Transparent and Efficient
Performance Analysis Approach to Enhance DPDK Observability, Runtime Verification,
Austria, 2025.

Previous Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri 4

● Low-level languages like C/C++ lack automatic memory management,
leading to many issues related to memory accesses

— Out-of-band
— Use after free
— Use before initialization
— Memory Leak
— Etc.

Memory Access Validation

POLYTECHNIQUE MONTREAL – Adel Belkhiri 5

Red zones and shadow memory

POLYTECHNIQUE MONTREAL – Adel Belkhiri 6

Pointer tainting (1)

● Embeds metadata (e.g., an object-ID) in the top 2 bytes of a 64-bit pointer (x86-64) to
enable memory access validation at runtime

● How it works?

1) Heap allocator returns a tainted pointer.

2) When the pointer is dereferenced the CPU flags the non‑canonical address,
triggering SIGSEGV/SIGBUS.

3) The signal handler:

a) Removes the taint,

b) Validates the access against shadow metadata,

 c) Executes the access instruction with the untainted pointer

d) Re‑applies the taint, and resumes execution.

POLYTECHNIQUE MONTREAL – Adel Belkhiri 7

Pointer tainting (2) — Tools

● Valgrind Memcheck = 20x to 50x slowdown
● Addess Sanitizer (ASan) = 2x to 3x slowdown
● Address Monitor (AMon)

● Inserts taint/untaint code at compile time via custom LLVM passes.
● Advantages / Limitations:

+ Low runtime overhead.

+ Efficient for source-available code.

– Requires recompilation and full access to the source.

POLYTECHNIQUE MONTREAL – Adel Belkhiri 8

Pointer tainting (3) — Tools

● Beyond DataWatch

● Jason Puncher developed Datawatch at Ciena to detect
invalid memory accesses (for 32-bit applications - PowerPC)

● Olivier Dion developed Libpatch to dynamically instrument
applications with pre and post handlers around target
instructions

● David Piché prototyped tainted pointers for user-level x86-
64 applications with MallocSan, using different methods,
including ptrace and Libpatch

POLYTECHNIQUE MONTREAL – Adel Belkhiri 9

Pointer tainting (4) — Tools

● MallocSan

● Advantages / Limitations:

+ No recompilation required

+ Supports on-the-fly, selective protection (e.g., per object or allocation site)

– Slightly higher cost due to first-hit patching and thread synchronization

 – Wrapping all glibc syscalls is complicated, which may introduce blind spots

POLYTECHNIQUE MONTREAL – Adel Belkhiri 10

Possible Optimization — MallocSan

● Libpatch cannot presently instrument and place pre and post handlers on every
possible instruction:

● For short instructions (less than 5 bytes) the post handler is not called directly
after the target instruction

● It is not possible to instrument two consecutive short instructions

● For branching instructions, the post handler cannot be called

➔ Consequently, MallocSan must often fall back on using the much slower trap-
based instrumentation

Examples of short instructions

mov al, [rax] ; Load (2 bytes)
mov [rax], al ; Store (2 bytes)

POLYTECHNIQUE MONTREAL – Adel Belkhiri 11

Possible Optimization — MallocSan

● Remove redundant untaint/check/retaint:
● For two consecutive accesses to the same memory region (with same size),

untaint/check/retaint only once
● If the untainted register is not reused (quickly overwritten), avoid retainting

● Examples:

int *ptr = malloc(4)
*ptr = 42; // write to the address pointed by the pointer
int val = *ptr; // read from the same address and same size

int *ptr = malloc(4)
For (int i = 0; i < 19; i++) {
 *ptr = i; // writing to the same address repeatedly
}

POLYTECHNIQUE MONTREAL – Adel Belkhiri

● Dynamic instrumentation enables memory access validation without
recompilation, while allowing selective and targeted checks

● Next Steps:

● Extend Libpatch to support finer-grained jump-based patching

● Enhance MallocSan: improve coverage & reduce runtime overhead

Future Work

12

We welcome all
suggestions

and feedback!

POLYTECHNIQUE MONTREAL – Adel Belkhiri

Questions?
adel.belkhiri@polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

