Runtime Memory Access Validation
Using Dynamic Instrumentation

Adel Belkhiri

May 12, 2025

Polytechnique Montreéal

DORSAL Laboratory



Agenda

©® Previous Work

® Memory access validation techniques

— Redzones, shadow memory, and pointer tainting

©® Beyond Datawatch

O Future Work

POLYTECHNIQUE MONTREAL — Adel Belkhiri 2




Previous Work

* Integrated DPDK mempool analyses into Trace Compass Incubator

type filter text 300k/s-
Mempools Legend 250 k/fs-|
« [ vpp-2025-04-09-PM-08-04-46
~ B vpp pool 0 200k/s |
« [ lvpp g type filter text - I'nm!
alloc :lj' 150k/5 Mempool Name Legend
T
& freek . o - - + B vpp-2025-04-09-PM-08-04-46 4k- R
~ fad VPP_WK_ v vpp pool 0 -
v all &
= 50k/s - vpp pool 0 (no cache) 3 3k
free E
vpp poal 0 (no cache) &
O 2k-
20:04:50 20:0
1k-
20:04:50 20:04:55 20:05:00 20:05:05 20:05:10 20:05:15 20:05:20 20:05:2

 Submitted an article to Runtime Verification conference.

A. Belkhiri, A. Fiorini, M. Khouzam and H. Lee, A Transparent and Efficient

Performance Analysis Approach to Enhance DPDK Observability, Runtime Verification,
Austria, 2025.

POLYTECHNIQUE MONTREAL — Adel Belkhiri 3




Memory Access Validation

* Low-level languages like C/C++ lack automatic memory management,
leading to many issues related to memory accesses

— Qut-of-band
Program critical error B
— Use after free The instuction at 0x0000000025C2E42B referenced
memory at 0x000000034D02F4. The memory could
not be read.

— Use before initialization

Click on OK to terminate the program
Click on CANCEL to debug the program

- Memory Leak

Ok || cancel

- Etc.

POLYTECHNIQUE MONTREAL — Adel Belkhiri 4




Red zones and shadow memory

Red zones:

Special memory areas
placed around allocated
memory blocks to detect
overflows

Shadow Memory:

A parallel memory structure
that stores metadata about
application data

POLYTECHNIQUE MONTREAL — Adel Belkhiri

alloc 1

Each 8-byte region of application
memory is mapped to a single
shadow byte that encodes its
accessibility status

01-07

\

Heap redzone:
Not addressable

Addressable

Partially Addressable:
Only first N bytes are

addressable




Pointer tainting (1)

* Embeds metadata (e.g., an object-ID) in the top 2 bytes of a 64-bit pointer (x86-64) to
enable memory access validation at runtime

* How it works?

1) Heap allocator returns a tainted pointer.

2) When the pointer is dereferenced the CPU flags the non-canonical address,
triggering SIGSEGV/SIGBUS.

3) The signal handler:
a) Removes the taint,
b) Validates the access against shadow metadata,
¢) Executes the access instruction with the untainted pointer

d) Re-applies the taint, and resumes execution.

POLYTECHNIQUE MONTREAL — Adel Belkhiri 6




Pointer tainting (2) — Tools

* Valgrind Memcheck = 20x to 50x slowdown
* Addess Sanitizer (ASan) = 2x to 3x slowdown
* Address Monitor (AMon)
* Inserts taint/untaint code at compile time via custom LLVM passes.
* Advantages / Limitations:
+ Low runtime overhead.
+ Efficient for source-available code.

- Requires recompilation and full access to the source.

POLYTECHNIQUE MONTREAL — Adel Belkhiri 7




Pointer tainting (3) — Tools

* Beyond DataWatch

Signal Handler

* Jason Puncher developed Datawatch at Ciena to detect
invalid memory accesses (for 32-bit applications - PowerPC)

——_——— — —— — — — — — —

Pre-handler

Check bounds
+
Untaint register

v

oLX

* Olivier Dion developed Libpatch to dynamically instrument
applications with pre and post handlers around target
instructions

Execute original instruction

* David Piché prototyped tainted pointers for user-level x86-
64 applications with MallocSan, using different methods,
including ptrace and Libpatch

Y
Post-handler

Retaint register

POLYTECHNIQUE MONTREAL — Adel Belkhiri 8




Pointer tainting (4) — Tools

* MallocSan

* Advantages / Limitations:

+ No recompilation required

+ Supports on-the-fly, selective protection (e.g., per object or allocation site)
- Slightly higher cost due to first-hit patching and thread synchronization

- Wrapping all glibc syscalls is complicated, which may introduce blind spots

POLYTECHNIQUE MONTREAL — Adel Belkhiri 9




Possible Optimization — MallocSan

* Libpatch cannot presently instrument and place pre and post handlers on every
possible instruction:

* For short instructions (less than 5 bytes) the post handler is not called directly
after the target instruction

 Itis not possible to instrument two consecutive short instructions

* For branching instructions, the post handler cannot be called

> Consequently, MallocSan must often fall back on using the much slower trap-
based instrumentation

Examples of short instructions

mov al, [rax] ; Load (2 bytes)
mov [rax], al ; Store (2 bytes)

POLYTECHNIQUE MONTREAL — Adel Belkhiri 10




Possible Optimization — MallocSan

* Remove redundant untaint/check/retaint:

* For two consecutive accesses to the same memory region (with same size),
untaint/check/retaint only once

 If the untainted register is not reused (quickly overwritten), avoid retainting

* Examples:

int *ptr = malloc(4)
*ptr = 42; /[ write to the address pointed by the pointer
int val = *ptr; // read from the same address and same size

int *ptr = malloc(4)
For (inti=0;1<19;i++){
*ptr =1i; // writing to the same address repeatedly

}

POLYTECHNIQUE MONTREAL — Adel Belkhiri 11




Future Work

* Dynamic instrumentation enables memory access validation without
recompilation, while allowing selective and targeted checks

* Next Steps:
* Extend Libpatch to support finer-grained jump-based patching

* Enhance MallocSan: improve coverage & reduce runtime overhead

We welcome all
suggestions
and feedbacR!

POLYTECHNIQUE MONTREAL — Adel Belkhiri 12




Questions?

adel.belkhiri@polymtl.ca

POLYTECHNIQUE MONTREAL - Adel Belkhiri



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

