
Lockless Multi-Core High-Throughput Buffering Scheme
for Kernel Tracing

Mathieu Desnoyers
EfficiOS Inc.

mathieu.desnoyers@efficios.com

Michel R. Dagenais
Dept. of Computer and Software Eng.

Ecole Polytechnique de Montreal
P.O. Box 6079, Station Downtown

Montreal, Quebec, Canada, H3C 3A7
michel.dagenais@polymtl.ca

ABSTRACT
Studying execution of concurrent real-time online systems,
to identify far-reaching and hard to reproduce latency and
performance problems, requires a mechanism able to cope
with voluminous information extracted from execution traces.
Furthermore, the workload must not be disturbed by trac-
ing, thereby causing the problematic behavior to become
unreproducible.

In order to satisfy this low-disturbance constraint, we cre-
ated the LTTng kernel tracer. It is designed to enable safe
and race-free attachment of probes virtually anywhere in the
operating system, including sites executed in non-maskable
interrupt context.

In addition to being reentrant with respect to all kernel exe-
cution contexts, LTTng offers good performance and scalabil-
ity, mainly due to its use of per-CPU data structures, local
atomic operations as main buffer synchronization primitive,
and RCU (Read-Copy Update) mechanism to control tracing.

Given that kernel infrastructure used by the tracer could
lead to infinite recursion if traced, and typically requires
non-atomic synchronization, this paper proposes an asyn-
chronous mechanism to inform the kernel that a buffer is
ready to read. This ensures that tracing sites do not require
any kernel primitive, and therefore protects from infinite re-
cursion.

This paper presents the core of LTTng’s buffering algorithms
and measures its performance.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Anal-
ysis and Design Aids—Device driver tracing

; C.4 [Computer Systems Organization]: PERFOR-
MANCE OF SYSTEMS—Measurement technique

; D.4.7 [OPERATING SYSTEMS]: Organization and
Design—Real-time systems embedded systems, Distributed
system

; D.4.8 [OPERATING SYSTEMS]: Performance—Mea-
surements, Monitors, Operational analysis

General Terms
Performance, Measurement, Algorithms, Design, Experimen-
tation

Keywords
kernel, tracing, lockless, atomic, modular arithmetic, Linux,
LTTng

1. INTRODUCTION
Performance monitoring of multiprocessor high-performance
computers, deployed as production systems (e.g. Google
platform), requires tools reporting detailed system execu-
tion. This provides better understanding of complex multi-
threaded and multi-processes application interactions with
the kernel.

Tracing the most important kernel events has been done for
decades in the embedded field to reveal useful information
about program behavior and performance. The main dis-
tinctive aspect of multiprocessor system tracing is the com-
plexity added by time-synchronization across cores. Addi-
tionally, tracing of interactions between processes and the
kernel generates a high volume of information. Further
challenges emerge from the requirements for a tracing fa-
cility appropriate for use on live production servers. These
factors steer design choices towards low-impact monitor-
ing through data extraction, leaving out debugger-like ap-
proaches that change the system behavior, e.g., stopping
processes or changing the process memory.

Allowing wide instrumentation coverage of the kernel code
is especially tricky, given the concurrency of multiple ex-
ecution contexts and multiple processors. In addition to
being able to trace a large portion of the executable code,
another key element expected from a kernel tracer is low-
overhead and low-disturbance of the normal system behav-
ior. Ideally, a problematic workload should be repeatable
both under normal conditions and under tracing, without
suffering from the observer effect caused by the tracer. The
LTTng [Desnoyers and Dagenais 2006] tracer (available at:
http://www.lttng.org) has been developed with these two
main goals in mind: provide good instrumentation coverage
and minimize observer effect. The work on LTTng started
back in 2005.

A state of the art review is first presented in Section 2. It
shows how the various tracer requirements influence their

design and core synchronization primitive choices, leading
them to differ in many aspects from LTTng. The K42 tracer
will be studied in detail, given the significant contribution
of this research-oriented operating system. This paper will
discuss some limitations present in the K42 lockless algo-
rithm, which motivates the need for a new buffer manage-
ment model. The design of the LTTng tracer will be pre-
sented in Section 3. The equations and algorithms required
to manage the buffers, ensuring complete atomicity of the
probe, will then be detailed in Section 4. The scalability of
the approach is discussed, explaining the motivation behind
the choice of per-CPU data structures to provide good pro-
cessor cache locality. Finally, in Section 5 performance tests
show how the tracer performs under various workloads at
the macro-benchmark and micro-benchmark levels.

2. STATE OF THE ART
In this section, we first present a review of the tracing re-
quirements from the target LTTng user-base. This is a sum-
mary of field work done to identify those requirements from
real-world Linux users. Then, we present state-of-the-art
open source tracers. For each of these, their target usage sce-
narios are presented along with the requirements imposed.
Finally, we study in more depth the tracer in K42, which is
the closest to LTTng requirements, explaining where LTTng

brings new contributions.

Previous work published in 2007 at the Linux Symposium
[Bligh et al. 2007] and Europar [Wisniewski et al. 2007] pre-
sented the user-requirements for kernel tracing that are driv-
ing the LTTng effort. They explain how tracing is expected
to be used by Linux end-users, developers, technical sup-
port providers and system administrators. The following
list summarizes this information and lists which Linux dis-
tributions integrate LTTng:

• Large online service companies such as Google need a
tool to monitor their production servers and to help
them solve hard to reproduce problems. Google had
success with such tracing approaches to fix rarely oc-
curring disk delay issues and virtual memory related
issues. They need the tracer to have a minimal perfor-
mance footprint.

• IBM Research looked into debugging of commercial
scale-out applications, which are increasingly used to
split large server workloads. They used LTTng success-
fully to solve a distributed filesystem-related issue.

• Autodesk, in the development of their next-generation
Linux audio/video edition applications, used LTTng ex-
tensively to solve soft real-time issues.

• Wind River includes LTTng in their Linux distribution
so their clients, already familiar with Wind River Vx-
Works tracing solutions, can benefit from the same
kind of features they have relied on for a long time.

• Montavista has integrated LTTng in their Carrier Grade
Linux Edition 5.0 for the same reasons.

• SuSE is currently integrating LTTng in their SLES real-
time distribution, because their clients, asking for so-
lutions supporting a real-time kernel, need such tools
to debug their problems.

• A project between Ericsson, Defence R&D Canada,
NSERC and various universities aims at monitoring
and debugging multi-core systems, providing tools to
automate system behavior analysis.

• Siemens has been using LTTng internally for quite some
time [Hillier 2008].

• Sony, Freescale Semiconductors, Nokia, Mentor Graph-
ics, and others are using or distributing LTTng as well.

In theory, a number of lock-free data structures (e.g. queues)
could be used for buffering trace data. However, the vol-
ume of tracing data, and the importance of maintaining a
minimal overhead, rules out these generic solutions. Trac-
ing requires event data insertion atomicity but removal is
performed asynchronously in bulk. Preallocation of buffer
memory with a bounded capacity is preferred in tracing over
dynamic allocation and deallocation at each insertion and
removal. Furthermore, tracing brings a number of specific
requirements such as working even in NMI context and dis-
carding events on buffer full condition rather than blocking.

We now look at existing tracing solutions for which detailed
design and implementation documentation is publicly avail-
able. This study focuses on tracers available under an open-
source license, given that closed-source tracers do not pro-
vide such detailed documentation. The requirements ful-
filled by each tracer as well as their design choices are ex-
posed. Areas in which LTTng requirements differ from these
tracers are outlined.

DTrace [Cantrill et al. 2004], first made available in 2003 and
formally released as part of Sun’s Solaris 10 in 2005, aims at
providing information to users about the way their operat-
ing system and applications behave by executing scripts per-
forming specialized analysis. It also provides the infrastruc-
ture to collect the event trace into memory buffers, but aims
at moderate event production rates. It disables interrupts to
protect the tracer from concurrent execution contexts on the
same processor, and uses a sequence lock to protect the clock
source from concurrent modifications. Therefore, while very
flexible, DTrace cannot provide the same coverage (e.g., ap-
plicable in NMI context) or the same low overhead (lockless
tracing) as LTTng.

SystemTAP [Prasad et al. 2005] provides scriptable probes
which can be connected on top of Linux kernel statically de-
fined tracepoints (Markers or Tracepoints) or dynamically
inserted (Kprobes [Mavinakayanahalli et al. 2006]) trace-
points. It is designed to provide a safe language to express
the scripts to run at the instrumentation site, but does not
aim at optimizing probe performance for high data volume.
Indeed, it was originally designed to gather information ex-
clusively from Kprobes breakpoints and therefore expects
the user to carefully filter out the unneeded information to
diminish the probe effect. It disables interrupts and takes
a busy-spinning lock to synchronize concurrent tracing site
execution. The LKET project (Linux Kernel Event Tracer)
re-used the SystemTAP infrastructure to trace events, but
reached limited performance results given the fact that it
shared much of SystemTAP’s heavy synchronization. System-
Tap is very similar to DTrace in several respects, and suffers

from the same limitations as compared to LTTng. One key
difference is that the probe scripts are compiled into more
efficient native code in SystemTap, instead of bytecode in
DTrace.

Ftrace, started in 2009 by Ingo Molnar, aims primarily at
kernel tracing suited for kernel developer’s needs. It is mostly
based on specialized trace analysis modules run in kernel-
space to generate either a trace or analysis output, available
to the user in text format. It also integrates binary buffer
data extraction to provide efficient data output. Until re-
cently, it was based on per-cpu busy-spinning locks, and
interrupt disabling, to protect the tracer against concurrent
execution contexts. It now implements a lockless buffering
scheme similar to that already used by LTTng.

The K42 [Krieger et al. 2006] project is a research operating
system developed mostly between 1999 and 2006 by IBM
Research. It targeted primarily large multiprocessor ma-
chines with high scalability and performance requirements.
It contained a built-in tracer named“trace”, which was an el-
ement integrated to the kernel design. The scale of systems
targeted by K42, as well as their use of lockless buffering
algorithms with atomic operations, make its an inevitable
part of the state of the art that needs to be taken into con-
sideration before introducing LTTng.

From a design point of view, a major difference between
this research-oriented tracer and LTTng is that the latter
aims at deployments on multi-user Linux systems, where se-
curity is a concern. Therefore, simply sharing a per-CPU
buffer, available both for reading and writing by the kernel
and any user process, would not be acceptable on produc-
tion systems. Also, in terms of synchronization, K42’s tracer
implementation ties trace extraction daemon threads to the
processor on which the information is collected. Although
this removes needs for synchronization, it also implies that
a relatively idle processor cannot contribute to the overall
tracing effort when some processors are busier. Regarding
CPU hotplug support, which is present in Linux, an ap-
proach where the only threads able to extract the buffer
data would be tied to the local processor would not allow
trace extraction in the event a processor would go offline.
Adding support for cross-CPU data reader support would
involve adding the proper memory barriers to the tracer.

Then, more importantly for the focus of this paper, studying
in depth the lockless atomic buffering scheme found in K42

indicates the presence of a race condition where data cor-
ruption is possible. It must be pointed out that, given the
fact that the K42 tracer uses large buffers compared to the
typical event size, this race is unlikely to happen, but could
become more frequent if the buffer size is made smaller or
larger events were written, which LTTng tracer’s flexibility
permits.

The K42 tracer [Wisniewski and Rosenburg 2003] divides the
memory reserved for tracing a particular CPU into buffers
(which are called “K42 buffers” throughout this paper). This
maps to the sub-buffer concept which will be presented in the
LTTng design 3. In comparison, LTTng uses the term “buffer”
to identify the set of sub-buffers which are part of the cir-
cular buffer. The K42 scheme uses a lockless buffer-space

management algorithm based on reserve-commit semantic.
Space is first reserved atomically in the K42 buffer, then
both data write and the commit counter update are per-
formed out-of-order with respect to local interrupts. It uses
a buffersProduced count, which counts the number of K42

buffers produced by the tracer, a buffersConsumed counter,
tracking the number of K42 buffers read, and a per-buffer
bufferCount, counting the amount of data committed into
each K42 buffer.

In the K42 scheme, the buffersProduced counter is incre-
mented upon buffer space reservation for an event crossing
a K42 buffer boundary. If other out-of-order writes are caus-
ing the current and previous K42 buffer’s commit counters
to be a multiple of buffer size (because they would still be
fully uncommitted), the user-space data consumption thread
can read non-committed (invalid) data because the buffer-
sProduced would make an uncommitted K42 buffer appear
as fully committed. This is a basic algorithmic flaw that
LTTng fixes by using a free-running per sub-buffer commit
count and by introducing a new buffer full criterion which
depends on the difference between the write count (global to
the whole buffer) and its associated per-sub-buffer commit
count, as detailed in Equation (1) in Section 4.2. The algo-
rithmic flaws identified here in the K42 buffering mechanism,
which differ from the minor limitations mentioned in [Wis-
niewski and Rosenburg 2003], require a complete re-design
the lock-less counter scheme.

The formal verification performed by modeling LTTng algo-
rithms, and using the Spin model-checker [Desnoyers 2009],
increases the level of confidence that such corner-cases are
correctly handled.

3. DESIGN OF LTTNG
Tracing an operating system kernel brings interesting prob-
lems related to the observer effect. In fact, tracing performed
at the software level requires modifying the execution flow
of the traced system and therefore modifies its behavior and
performance. Each execution context concerned must be
taken into account in order to decide what code is allowed
to be executed when the instrumentation is reached.

This section describes how LTTng is designed to deal with
kernel tracing, satisfying the constraints associated with syn-
chronization of data structures while running in any execu-
tion context, avoiding kernel recursion and inducing a very
small performance impact. It details a complete buffer syn-
chronization scheme.

This section starts with a high-level overview of the tracer
design. It is followed by a more detailed presentation of the
Channel component, an highly-efficient data transport pipe.
The Data Flow presentation, as seen from the tracing probe
perspective, is then exposed. This leads to the synchroniza-
tion of trace Control data structures, allowing tracing con-
figuration. Finally, the Atomic Buffering Scheme section
details the core of LTTng concurrency management, which
brings innovative algorithms to deal with write concurrency
in circular memory buffers.

Figure 1: Tracer components overview

3.1 Components overview
Starting with a high-level perspective on the tracer design,
Figure 1 presents the component interactions across kernel-
space to user-space boundary.

Kernel core and kernel modules are instrumented either stat-
ically, at the source-code level with the Linux Kernel Mark-
ers and Tracepoints, or dynamically with Kprobes. Each in-
strumentation site identifies kernel and module code which
must be traced upon execution. Both static and dynamic
instrumentation can be activated at runtime on a per-site
basis to individually enable each event type. An event is
semantically tied to a set of functionally equivalent instru-
mentation sites.

When an instrumented code site is executed, the LTTng probe
is called if the instrumentation site is activated. The probe
reads the trace session status and writes an event to the
channels.

Trace sessions contain the tracing configuration data and
pointers to multiple channels. Although only one session is
represented in Figure 1, there can be many trace sessions

concurrently active, each with its own trace configuration
and set of channels. Configuration data determines if the
trace session is active or not and which event filters should
be applied.

Figure 2: Channel components

From a high-level perspective, a channel can be seen as an
information pipe with specific characteristics configured at
trace session creation time. Various configuration options
can be specified on a per-channel basis, such as: buffer size,
tracing mode, which specify how buffer full situations should
be handled, and buffer flush period. These options will be
detailed in Section 3.2.

DebugFS is a virtual filesystem providing an interface to con-
trol kernel debugging and export data from kernel-space to
user-space. The trace session and channel data structures
are organised as DebugFS files to let lttctl and lttd inter-
act with them.

The user-space program lttctl is a command-line interface
interacting with the DebugFS file system to control kernel
tracing. It configures the trace session before tracing starts
and is responsible for starting and stopping trace sessions.

The user-space daemon lttd also interacts with DebugFS

to extract the channels to disk or network storage. This
daemon is only responsible for data extraction; this daemon
has absolutely no direct interaction with trace sessions.

3.2 Channels
After the high-level tracer presentation, let’s focus on the
Channel components. They are presented in Figure 2.

A channel is a pipe between an information producer and
consumer (producer and writer as well as consumer and
reader will be respectively used as synonyms through this
paper). It serves as a buffer to move data efficiently. It
consists of one buffer per CPU to ensure cache locality and
eliminate false-sharing. Each buffer is made of many sub-
buffers where slots are reserved sequentially. This way, while
one sub-buffer is being filled, one or more other sub-buffers
are full and queued to be written to disk, or are free and
available to be filled. Each sub-buffer is exported by the
lttd daemon to disk or through network.

A slot is a sub-buffer region reserved for exclusive write ac-
cess by a probe. This space is reserved to write either a
sub-buffer header or an event header and payload. Figure 2
shows space being reserved. On CPU 0, space is reserved
in sub-buffer 0 following event 0. In this buffer, the header

and event 0 elements have been completely written to the
buffer. The grey area represents slots for which associated
commit count increment has been done. Committing a re-
served slot makes it available for reading. On CPU n, a slot
is reserved in sub-buffer 0 but is still uncommitted. It is how-
ever followed by a committed event. This is possible due to
the non-serial nature of event write and commit operations.
This situation happens when an event must be written by
an interrupt handler nested between space reservation and
commit count update of another event. Sub-buffer 1, be-
longing to CPU 0, shows a fully committed sub-buffer ready
for reading. The consumer is allowed to read from slots only
after the sub-buffer containing them has been filled, which
ensures no holes are encountered.

Events written in a reserved slot are made of a header and a
variable-sized payload. The header contains the time stamp
associated with the event and the event type (an integer
identifier). The event type information allows parsing the
payload and determining its size. The maximum slot size is
bounded by the sub-buffer size. A data producer is perform-
ing what we define as sub-buffer switch when it stops using
a sub-buffer for reserving space and passes to the following
sub-buffer.

Channels are configured in a tracing mode that specify how
buffer full conditions should be handled. Flight recorder
tracing overwrites the oldest buffer data when a buffer is
full. Conversely, discard tracing discards (and counts) events
when a buffer is full. Those discarded events are counted to
evaluate tracing accuracy. These counters are recorded in
each sub-buffer header to allow identifying which trace re-
gion suffered from event loss. The former mode is made to
capture a snapshot of the system preceding execution at a
given point. The latter is made to collect the entire execu-
tion trace over a period of time.

3.3 Probe Data Flow
The tracing data flow from the probe perspective is illus-
trated in Figure 3. This figure includes all data sources and
sinks, including those which are not part of the tracer per se,
such as kernel data structures and hardware time stamps.

A probe takes event data from registers, the stack, or from
memory every time the instrumented kernel execution site
is reached. A time stamp is then associated with this in-
formation to form an event, identified by an event type ID.
The tracing control information is read to know which chan-
nel is concerned by the information. Finally, the result-
ing event is serialized and written to a circular buffer to be
later exported outside of kernel-space. The channels follow
a producer-consumer semantic.

Instrumentation can be inserted either statically, at the sour-
ce-code level, or dynamically, using a breakpoint. The for-
mer allows building instrumentation into the software and
therefore identify key instrumentation sites, maintaining a
stable API. It can also restrain the compiler from optimizing
away variables needed at the instrumented site. However, in
order to benefit from flexible live instrumentation insertion,
without recompilation and reboot, it might be adequate to
pay the performance cost associated with a breakpoint, but
one must accept that the local variables might be optimized

Figure 3: Probe data flow

away and that the kernel debug information must be kept
around.

Source-code level instrumentation, enabled at runtime, is
currently provided by Tracepoints [Corbet 2008] and Linux
Kernel Markers [Corbet 2007a], developed as part of the
LTTng project and merged into the mainline Linux kernel.
Dynamic instrumentation, based on breakpoints, is provided
in the Linux kernel by Kprobes [Mavinakayanahalli et al.
2006] for many architectures. LTTng, SystemTAP and DTrace

all use a combination of dynamic and static instrumentation.
The details about the different instrumentation mechanisms
are not, however, the focus of this paper.

3.4 Control
This section presents interactions with the trace session data
structure depicted in Figure 1 along with the required syn-
chronization.

Tracing control under LTTng is organized around the concept
of “tracing session”. This defines the configuration of a set of
buffers and the subset of the system events that needs to be
collected into each channel. Multiple tracing sessions can be
active in parallel, each with different buffer configurations
and collecting different system events.

Tracing control operates on a list of tracing sessions. Avail-
able actions include creating a new trace session, starting
or stopping tracing, and freeing a trace session. Upon new
trace session creation, parameters must be set such as chan-
nel’s buffer size, number of sub-buffers per buffer, and trac-

ing mode (flight recorder or discard). This allows end-users
to tune the tracer configuration appropriately for their work-
load.

Event collection can be enabled/disabled on a per-tracing-
session basis. It is useful to start/stop collection of a set of
events atomically. Events to be collected into each channel
are selected by hooking callbacks onto the instrumentation
sites (this selection is therefore performed in multiple mem-
ory accesses). The single per-session flag starts/stops tracing
at once with a single memory access.

The linked list containing tracing session nodes is protected
against concurrent modifications with a global mutex and
synchronized with respect to read-side traversal using RCU

(Read-Copy Update) [McKenney 2004, Desnoyers et al. 2012].
Two types of data structure modifications can be done: con-
figuration elements within a session can be updated atom-
ically, in which case it is safe to perform the modification
without copying the complete trace session data structure
as long as the mutex is held. Non-atomic updates must be
done on a copy of the trace session structure, followed by
a replacement of the old copy in the list by two successive
pointer changes in this precise order: first setting the pointer
to next element within the new copy and then setting the
pointer to the new copy in the previous element. Then the
update must wait for quiescent state, which allows memory
reclamation of the old data structure. This ensures no active
data structure readers, the probes, still hold a reference to
the old tracing session structure when it is freed.

Although some tracing session configuration options are al-
lowed to be modified while tracing is active, modification of
buffer structures configuration per se is only allowed upon
new trace session creation, before tracing is started, and
upon deletion, after tracing has been stopped and no con-
sumers are using the buffers anymore. This ensures only the
data producers and consumers will touch the buffer man-
agement structures, thus keeping complexity of interaction
between producer and consumer relatively low.

In order to provide the ability to export tracing information
as a live stream, we need to provide an upper bound on the
maximum latency between the moment the event is written
to the memory buffers and the moment it is ready to be read
by the consumer. However, because the information is only
made available for reading after a sub-buffer has been filled,
a low event rate channel might never be ready for reading
until the final buffer flush is done when tracing is stopped.

To get around this problem, LTTng implements a per-CPU
sub-buffer flush function which can be executed concurrently
with tracing. It shares many similarities with tracing an
event. However, it won’t flush an empty sub-buffer because
there is no information to send and it does not reserve space
in the buffer. The only supplementary step required to
stream the information is to call the buffer flush for each
channel periodically in a per-CPU timer interrupt.

The following section presents channel ring-buffer synchro-
nization.

Figure 4: Producer-consumer synchronization

4. ATOMIC BUFFERING SCHEME
The atomic buffering scheme implemented in LTTng allows
the probe to produce data in circular buffers with a buffer-
space reservation mechanism which ensures correct reen-
trancy with respect to asynchronous event sources. These
include maskable and non-maskable interrupts (NMIs). Pre-
emption1 is temporarily disabled around the tracing site to
make sure no thread migration to a different CPU can occur
in the middle of probe execution2.

Section 4.1 first presents the data structures used to syn-
chronize the buffering scheme. Then, algorithms performing
interactions between producer and consumer are discussed
respectively in sections 4.2, 4.3, 4.3.1, 4.3.2 and 4.3.3.

4.1 Atomic data structures
Figure 4 shows the per-CPU data structures keeping track of
the number of bytes reserved (write count) by the producer
and consumed (read count) by the consumer for a buffer. An
array of commit counts and commit seq counters3 is needed
to know when data written by the producer is ready to be
consumed. The commit count and commit seq counters keep
track of the number of bytes committed in a sub-buffer.

On SMP (Symmetric Multiprocessing) systems, some instruc-
tions are designed to update data structures in one single in-
divisible step. Those are called atomic operations. If atom-
icity is only needed in the context of a single processor, for
instance to protect per-CPU data structure updates against
preemption, less expensive local atomic operations may be
available.

1With fully-preemptible Linux kernels (CON-
FIG PREEMPT=y), the scheduler can preempt threads
running in kernel context to run another thread.
2This requirement on disabling thread migration is only nec-
essary if atomic operations are not SMP-aware. User-level
tracing, where migration cannot be disabled without sig-
nificant impact on execution, can be performed with the
algorithms presented here without disabling preemption by
using SMP-aware atomic operations
3The size of this array is the number of sub-buffers.

To properly implement the semantic of SMP-safe atomic op-
erations, memory barriers are required on some architecture
(this is the case for PowerPC and ARMv7 for instance).
For the x86 architecture family, these memory barriers are
implicit. However, a special lock prefix is required before
these instructions to synchronize multiprocessor accesses on
x86. Use of per-CPU data allows us to diminish performance
overhead of the tracer fast-path, as we can remove memory
barriers and use non bus-locking atomic operations. These
local atomic operations, only synchronized with respect to
the local processor, have a lower overhead than those syn-
chronized across cores. Those are the only instructions we
use to modify the per-CPU counters, which ensures reen-
trancy with NMI context.

The main restriction that must be observed when using such
operations is to disable preemption between reading the cur-
rent CPU number and access to these variables, thus ensur-
ing no thread is migrated from one core to another between
the moment the reference is read and the atomic access.
This ensures no remote core accesses the variable with SMP-
unsafe operations.

The three atomic instructions used are the CAS (Compare-
And-Swap), a local Compare-And-Swap (thereafter referred
to as LCAS), and a local atomic increment. The LCAS in-
struction is used on the write count to update the counter of
reserved buffer space. This operation ensures space reserva-
tion is done atomically with respect to other execution con-
texts running on the same CPU. The atomic add instruction
is used to increment the per sub-buffer commit count, which
identifies how much information has actually been written
in each sub-buffer. The commit count counters are updated
with a lightweight local increment instruction. The commit
seq counters are updated with a concurrency-aware CAS each
time a sub-buffer is filled. The consumer is only allowed to
read from a sub-buffer after its write count and commit seq
counter shows that it has been filled, thus ensuring that no
holes are present.

The sub-buffer size and the number of sub-buffers within
a buffer are limited to powers of 2 for two reasons. First,
using bitwise operations to access the sub-buffer offset and
sub-buffer index is faster than the modulo and division. The
second reason is more subtle: although the LCAS operation
could detect 32 or 64-bits overflows and deal with them cor-
rectly before they happen by resetting to 0, the commit count
atomic add will eventually overflow the 32 or 64-bits coun-
ters, which adds an inherent power of 2 modulo that would
be problematic, would the sub-buffer size not be a power of
2.

On the reader side, the read count is updated using a stan-
dard SMP-aware CAS operation. This is required because the
reader thread can read sub-buffers from buffers belonging to
a remote CPU. It is designed to ensure that a traced work-
load executed on a very busy CPU can be extracted by other
CPUs which have more idle time. Having the reader on a re-
mote CPU requires SMP-aware CAS. This allows the writer
to push the reader position when the buffer is configured
in flight recorder mode. The performance cost of the SMP-
aware operation is not critical because updating the read
count is only done once a whole sub-buffer has been read by

the consumer, or when the writer needs to push the reader
at sub-buffer switch, when a buffer is configured in flight
recorder mode. Concurrency between many reader threads
is managed by using a reference count on file open/release,
which only lets a single process open the file, and by re-
quiring that the user-space application reads the sub-buffers
from only one execution thread at a time. Mutual exclusion
of many reader threads is left to the user-space caller, be-
cause it must encompass a sequence of multiple system calls.
As a matter of fact, holding a kernel mutex is not allowed
when returning to user-space.

4.2 Equations
This section presents equations determining buffer state.
These are used by algorithms presented in Section 4.3.

These equations extensively use modulo arithmetic to con-
sider physical counter overflows. On 64-bits architectures,
equations are in modulo 264. On 32-bits architectures, they
are modulo 232.

We first define the following basic operations. Let’s define

• |x| as length of x.

• a mod b as modulo operation (remainder of a
b
).

•
n

M
m

(x) as x bitwise AND 00 . . . 011 . . . 1︸ ︷︷ ︸
n−m

00 . . . 0︸ ︷︷ ︸
m

,

formally: (x mod 2n)− (x mod 2m).

We define the following constants. Let

• |sbuf| be the size of a sub-buffer.
(power of 2)

• |buf| be the size of a buffer.
(power of 2)

• sbfbits = lg2(|sbuf|).

• bfbits = lg2(|buf|).

• nsbbits = bfbits− sbfbits.

• wbits be the architecture word size in bits.
(32 or 64 bits)

We have the following variables. Let

• wcnt be write counter mod 2wbits .

• rcnt be read counter mod 2wbits .

• wcommit be the commit counter commit seq mod 2wbits

belonging to the sub-buffer pointed to by wcnt .

• rcommit be the commit counter commit seq mod 2wbits

belonging to the sub-buffer pointed to by rcnt .

Figure 5: Write and read counter masks

Less than one complete sub-buffer is available for writing
when Equation (1) (Buffer Full) is satisfied. It verifies that
the difference between the number of sub-buffers produced
(multiplied by |sbuf|) and the number of sub-buffers con-
sumed (multiplied by |sbuf|) in the ring buffer is greater
or equal to the number of sub-buffers per buffer (also mul-
tiplied by |sbuf|). The implication of this equation being
satisfied at buffer switch is that the buffer is full. Both side
of this equation are treated as-is, without shifting to divide
by |sbuf|, to naturally apply the wbits overflow to the sub-
traction operation.

wbits

M
sbfbits

(wcnt)−
wbits

M
sbfbits

(rcnt) ≥ |buf| (1)

Write counter and read counter masks are illustrated in Fig-
ure 5. These masks are applied to wcnt and rcnt .

A buffer contains at least one sub-buffer ready to read when
Equation (2) (Sub-buffer Ready) is satisfied. The left side
of this equation takes the number of buffers consumed so
far (multiplied by |buf|), masks out the current buffer off-
set and divides the result by the number of sub-buffers per
buffer. This division ensures the left side of the equation
represents the number of sub-buffers reserved. The right
side of this equation takes the commit count to which rcnt
points and subtracts |sbuf| from it. It is masked to clear the
top bits, which ensures both sides of the equation overflow
at the same value. This is required because rcnt reaches
a 2wbits overflow sbfnb times more often than the per-sub-
buffer rcommit counters. |sbuf| is subtracted from rcommit
because we need to know when the commit seq is one whole
sub-buffer ahead of the read count.

wbits

M
bfbits

(rcnt)

2nsbbits
=

wbits−nsbbits

M
0

(rcommit − |sbuf|) (2)

The sub-buffer corresponding to wcnt is in a fully committed
state when Equation (3) (Fully Committed) is satisfied. Its
negation is used to detect a situation where an amount of
data sufficient to overflow the buffer is written by concurrent
execution contexts running between a reserve-commit pair.

Figure 6: Commit counter masks

wbits

M
bfbits

(wcnt)

2nsbbits
=

wbits−nsbbits

M
0

(wcommit) (3)

Commit counter masks are illustrated in Figure 6. These
masks are applied to rcommit and wcommit .

The sub-buffer corresponding to rcnt is being written when
Equation (4) (Sub-buffer Written) is satisfied. It verifies
that the number of sub-buffers produced and consumed are
equal.

wbits

M
sbfbits

(wcnt) =
wbits

M
sbfbits

(rcnt) (4)

4.3 Algorithms
Algorithms used to synchronize the producer and consumer
are presented in this section. It is followed by a presentation
of the asynchronous buffer delivery algorithm. Algorithms
presented in this section refer to equations presented in Sec-
tion 4.2.

4.3.1 Producer
This section presents the algorithms used by the information
producer, the probe, to synchronize its slot reservation within
the channels.

The overall call-graph presented in this section can be sum-
marized as follow. When an event is to be written, space
is reserved by calling ReserveSlot(), which calls TryRe-
serveSlot() in a loop until it succeeds. Then, PushRea-
der(), SwitchOldSubbuf(), SwitchNewSubbuf() and
EndSwitchCurrent() (not expanded in this paper for brev-
ity) are executed out-of-order to deal with sub-buffer switch.
After the event data is written to the slot, CommitSlot()
is called to increment the commit counter.

The write count and read count variables have the largest size
accessible atomically by the architecture, typically 32 or 64
bits. Since, by design, the sub-buffer size and the number of
sub-buffers within a buffer are powers of two, a LSB (Least
Significant Bit) mask can be used on those counters to ex-
tract the offset within the buffer. The MSBs (Most Signifi-
cant Bits) are used detecting the improbable occurrence of a
complete buffer wrap-around nested on top of the LCAS loop
in flight recorder mode. Such overflow, if undetected, could
make time-stamps appear to go backward in a buffer when
moving forward between two physically contiguous events.

Algorithm 1 TryReserveSlot(payload size)

Require: An integer payload size ≥ 0.
Require: Disabled preemption, ensuring event lost count

LCAS apply on local CPU counters.

1: Read write count
2: Read time stamp counter
3: Calculate required slot size
4: Calculate slot offset
5: if slot offset is at beginning of sub-buffer then
6: if Not Fully Committed (would overflow) then
7: Increment event lost count
8: slot size = FAIL
9: return slot size

10: end if
11: if Buffer Full && (in discard mode) then
12: Increment event lost count
13: slot size = FAIL
14: return slot size
15: end if
16: end if
17: Update buffer switch flags
18: return < slot size, slot offset, buffer switch flags,

write count, time stamp counter >

Such wrap-around could happen if many interrupts nest
back-to-back on top of a LCAS loop. A worse-case scenario
would be to have back-to-back nested interrupts generating
enough data to fill the buffer (typically 2 MiB in size) and
bring the write count back to the same offset in the buffer.
The LCAS loop uses the most significant counter bits to de-
tect this situation. On 32-bits architectures, it permits to
detect counter overflow up to 4 GiB worth of buffer data.
On 64-bits architectures, it detects up to 16.8 million TiB
worth of data written while nested over a LCAS loop exe-
cution. Given that this amount of trace data would have
to be generated by interrupt handlers continuously inter-
rupting the probe, we would consider an operating system
facing such interrupt rate to be unusable. As an example
of existing code doing similar assumptions, the Linux kernel
sequence lock, used to synchronize the time-base, is made of
a sequence counter also subject to overflow.

Slot reservation, presented in TryReserveSlot() and Re-
serveSlot() is performed as follow. From a high-level per-
spective, the producer depends on the read count and write
count difference to know if space is still available in the
buffers. If no space is available in discard mode, the event
lost count is incremented and the event is discarded. In flight
recorder mode, the next sub-buffer is overwritten by pushing
the reader. Variables write count, read count and the commit
seq array are used to keep track of the respective position of
the writer and the reader gracefully with respect to counter
overflow. Equations (1), (2), (3) and (4) are used to verify
the state of the buffer.

The write count is updated atomically by the producer to re-
serve space in the sub-buffer. Slots need to be written with a
time-stamp to allow a posteriori reordering of events across
buffers. Those time-stamps must be ordered according to
the order the slots were allocated to lessen the complexity of
the (a posteriori) reordering operation: it allows reordering

Algorithm 2 ReserveSlot(payload size)

Require: An integer payload size ≥ 0
Require: Disabled preemption, ensuring write count LCAS

apply on local CPU counters.
Ensure: slot offset is the only reference to the slot during

all the reserve and commit process, the slot is reserved
atomically, time stamps of physically consecutive slots
are always incrementing.

1: repeat
2: <slot size, slot offset, buffer switch flags,

time stamp counter>
= TryReserveSlot(payload size)

3: if slot size = FAIL then
4: return FAIL

5: end if
6: until LCAS of write count succeeds

7: PushReader(buffer switch flags)
8: Set reference flag in pointer to current sub-

buffer. Indicates that the writer is using

this sub-buffer.

9: SwitchOldSubbuf(buffer switch flags)
10: SwitchNewSubbuf(buffer switch flags)
11: EndSwitchCurrent(buffer switch flags)
12: return <slot size, slot offset, time stamp counter>

events across buffers with a single-pass merge. This can be
achieved by assigning time-stamps to each successful LCAS.
In order to apply monotonically increasing time stamps to
events which are physically consecutive in the buffer, the
time stamp is read within the LCAS loop. This ensures that
no space reservation succeeds between the time-stamp reg-
ister read and the atomic space reservation, and therefore
ensures that a successful buffer-space reservation and time-
stamp read are indivisible from one another from a CPU’s
perspective. Such mechanisms to make many instructions
appear to execute atomically is however limited to opera-
tions not having side-effects outside of the variables located
on the stack or in registers which can be re-executed upon
failure, except for the single LCAS operation which has side-
effects when it succeeds. It is therefore mostly limited to
read operations and the computation of the required slot
size for the event.

Keeping accurate time-stamping information with each event
allows following a thread execution across migration between
processors. Since thread migration typically takes an or-
der of magnitude longer than the maximum combined error
due to CPU cycle-counter precision and memory accesses
reordering, event causality within a traced thread will never
be reversed. For instance, if function A() is always exe-
cuted before function B() in a given thread, they will never
appear to execute in reverse order due to thread migration
between processors. However, causality between threads is
not guaranteed, as their execution would need to be modi-
fied to provide the level of granularity required to keep track
of synchronization performed through shared memory.

Once space is reserved, the remaining operations are done
out-of-order. This means that if an interrupt nests over a
probe, it will reserve a buffer slot next to the one being writ-
ten to by the interrupted thread, will write its event data

Algorithm 3 CommitSlot(slot size, slot offset)

Require: An integer slot size > 0 and the slot offset
Require: Disabled preemption, ensuring commit count lo-

cal add() apply on local CPU counters.

1: Compiler barrier4

2: Issue local add() to increment commit count of slot size
3: if Fully Committed then
4: commit seq old = commit seq
5: while commit seq old < commit count do
6: try CAS of commit seq. Expect commit seq old,

new value written is commit count. Save value
read to commit seq old.

7: end while
8: end if

in its own reserved slot and will atomically increment the
commit count before returning to the previous probe stack.
When a slot has been completely written to, the Commit-
Slot() algorithm is used to update the commit count. It is
also responsible for clearing the sub-buffer reference flag if
the sub-buffer is filled and updating commit seq.

There is one commit seq per sub-buffer. It also increments
forever in the same way the write count does, with the dif-
ference that it only counts the per-sub-buffer bytes commit-
ted rather than the number of bytes reserved for the whole
buffer. The difference between the write count MSBs di-
vided by the number of sub-buffers and the commit seq
MSBs (with the highest bits corresponding to the number of
sub-buffers set to zero) indicates if the commit count LSBs
represent an empty, partially or completely full sub-buffer.

As shown at the end of ReserveSlot(), switching between
sub-buffers is done out-of-order. It consists of two phases:
the first detects, within the LCAS loop, if a buffer switch is
needed. If this is the case, flags are set on the probe stack
to make the out-of-order code, following the loop, increment
the sub-buffer commit counts of the sub-buffer we are switch-
ing out from and the sub-buffer we are switching into. The
sub-buffer switched out from will therefore have its commit
count incremented by the missing amount of bytes between
the number of bytes reserved (and thus monotonically in-
crementing) and the sub-buffer size. Switching to a new
sub-buffer adds the new sub-buffer header’s size to the new
sub-buffer’s commit count. Another case is also possible,
namely when there is exactly enough event data to fit per-
fectly in the sub-buffer. In this case, an end switch current
flag is raised so the header information is finalized. All these
buffer switching cases also populate the sub-buffer head-
ers with information regarding the current time stamp and
padding size at the end of the sub-buffer, prior to increment-
ing the commit count. SwitchOldSubbuf(), SwitchNew-
Subbuf() and EndSwitchCurrent() are therefore respon-
sible for incrementing the commit count of the amount of
padding added at the end of a sub-buffer, clearing the refer-
ence flag when the sub-buffer is filled and updating commit
seq.

4The compiler barrier will be promoted to a write memory
barrier by an interprocessor interrupt sent by the read-side
ReadGetSubbuf(), as explained thoroughly in Section 4.4.

Algorithm 4 ForceSwitch()

Ensure: Buffer switch is done if sub-buffer contains data
Require: Disabled preemption, ensuring write count LCAS

apply on local CPU counters.

1: repeat
2: Calculate the commit count needed to fill the cur-

rent sub-buffer.
3: until LCAS of write count succeeds

4: PushReader()
5: Set reference flag in pointer to current sub-

buffer. Indicates that the writer is using

this sub-buffer.

6: SwitchOldSubbuf()
7: SwitchNewSubbuf()

Pushing a reader, represented by PushReader(), is done
by a writer in flight recorder mode when it detects that the
buffer is full. In that case, the writer sets the read count to
the beginning of the following sub-suffer.

Flushing the buffers while tracing is active, as done by the
pseudo-code presented in Algorithm ForceSwitch(), is re-
quired to permit streaming of information with a bounded
latency, between the time events are written into the buffers
and event delivery to user-space. It is a special-case of nor-
mal space reservation which does not reserve space in the
sub-buffer, but forces a buffer switch if the current sub-buffer
is non-empty. Buffer switch is called from a periodical timer,
configurable by the user to select how often buffer data must
be flushed.

4.3.2 Consumer
The consumer, lttd, uses two system calls, poll() and ioctl(),
to control interaction with memory buffers, and splice() as a
mean to extract buffers to disk or through network without
extra copy. At kernel-level, we specialize those three sys-
tem calls for the virtual files presented by DebugFS. The
daemon waits for incoming data using poll(). This sys-
tem call waits to be woken up by the timer interrupt (see
the AsyncWakeupReadersTimer() pseudo-code in Algo-
rithm 8). Once data is ready, it returns the poll priority
to user-space. If the tracer is currently writing in the last
available sub-buffer of the buffer, a high priority is returned.
Pseudo-code ReadPoll() summarizes the actions taken by
the poll() system call.

Once control has returned to user-space from the poll() sys-
tem call, the daemon takes a user-space mutex on the buffer
and uses the ioctl() system call to perform buffer locking op-
erations. Its implementation uses the ReadGetSubbuf()
and ReadPutSubbuf() algorithms. The former operation,
detailed in Algorithm 6, reserves a sub-buffer for the reader
and returns the read count. If the lower-level buffer writing
scheme would allow concurrent accesses to the reserved sub-
buffer between the reader and the writer, this value could be
used to verify, in the ReadPutSubbuf() operation, detailed
in Algorithm 7, that the reader has not been pushed by a
writer dealing with buffers in flight recorder mode. How-
ever, as we present below, this precaution is unnecessary
because the underlying buffer structure does not allow such
concurrency.

Algorithm 5 ReadPoll()

Ensure: Returns buffer readability state and priority

1: Wait on read wait wait queue.
2: if Sub-buffer Written then
3: if Sub-buffer is finalized (freed by the tracer) then
4: Hang up.
5: return POLLHUP

6: else
7: No information to read.
8: return OK

9: end if
10: else
11: if Buffer Full then
12: High-priority read.
13: return POLLPRI

14: else
15: Normal read.
16: return POLLIN

17: end if
18: end if

The specialized ioctl() operation is responsible for synchro-
nizing the reader with the writer’s buffer-space reservation
and commit. It is also responsible for making sure the sub-
buffer is made private to the reader, to eliminate any possi-
ble race in flight recorder mode. This is achieved by adding
a supplementary sub-buffer, owned by the reader. A “sub-
buffer table”, with pointers to the sub-buffers being used by
the writer, allows the reader to change the reference to each
sub-buffer atomically. The ReadGetSubbuf() algorithm
is responsible for atomically exchanging the reference to the
sub-buffer about to be read with the sub-buffer currently
owned by the reader. If the CAS operation fails, the reader
does not get access to the buffer for reading.

The reference to the sub-buffer consists of three values packed
within a single word, updated atomically: the low-half of the
sub-buffer reference keeps the index of the sub-buffer within
the sub-buffer page table. The lowest bit of the sub-buffer
reference high half encodes whether the sub-buffer is actively
referenced by the writer. This ensures that the pointer ex-
change performed by the reader can never succeed when the
writer is actively using the reference to write to a sub-buffer
about to be exchanged by the reader. Finally, the rest of
the high-half bits count the number of buffers produced,
used as a “tag” in flight-recorder mode. This makes sure the
consumer will always read the sub-buffers in the order they
were produced.

4.3.3 Asynchronous buffer delivery
Because the probe cannot interact directly with the rest of
the kernel, it cannot call the scheduler to wake up the con-
sumer. Instead, this ready to read sub-buffer delivery is
done asynchronously by a timer interrupt. This interrupt
checks if each buffer contains a filled sub-buffer and wakes
up the readers waiting in the read wait queue associated
with each buffer accordingly. This mechanism is detailed in
Algorithm 8.

Algorithm 6 ReadGetSubbuf()

Ensure: Take exclusive reader access to a sub-buffer.

1: Read read count.
2: Read the commit seq corresponding to the read count.
3: Issue a smp mb() (Memory Barrier on multiprocessor) to

ensure commit seq read is globally visible before sending
the IPI (Interprocessor Interrupt).

4: Send IPI to target writer CPU (if differs from the local
reader CPU) to issue a smp mb(). This ensures that
data written to the buffer and write count update are
globally visible before the commit seq write. Wait for
IPI completion.

5: Issue a smp mb() to ensure the write count and buffer
data read are not reordered before IPI execution.

6: Read write count.
7: if No Sub-buffer Ready then
8: return EAGAIN

9: end if
10: if Sub-buffer Written (Only flight recorder) then
11: return EAGAIN

12: end if
13: if Writer is holding a reference to the sub-buffer about

to be exchanged ∨ Exchange of reader/writer sub-buffer
reference fails then

14: return EAGAIN

15: end if
16: return read count

Algorithm 7 ReadPutSubbuf(arg read count)

Require: read count returned by ReadGetSubbuf()
(arg read count).

Ensure: Release exclusive reader access from a sub-buffer.
Always succeeds even if the writer pushed the reader,
because the reader had exclusive sub-buffer access.

1: new read count = arg read count + subbuffer size.
2: CAS expects arg read count, replaces with

new read count
3: return OK

Algorithm 8 AsyncWakeupReadersTimer()

Ensure: Wake up readers for full sub-buffers

1: for all Buffers do
2: if Sub-buffer Ready then
3: Wake up consumers waiting on the buffer

read wait queue.
4: end if
5: end for

4.4 Memory Barriers
Although LTTng mostly keeps data local to each CPU, cross-
CPU synchronization is still required at three sites:

• At boot-time and cpu hotplug time-stamp counters
synchronization, performed at by either the BIOS (Ba-
sic Input/Output System) or the operating system. This
heavy synchronization requires full control of the sys-
tem.

• When the producer finishes writing to a sub-buffer,
thus making it consumable by threads running on ar-
bitrary CPUs. This involves using the proper mem-
ory barriers ensuring that all previously written buffer
data is committed to memory before another CPU
starts reading the buffer.

• At consumed data counter update, involving the ap-
propriate memory barriers ensuring the data has been
fully read before making the buffer available for writ-
ing.

The two points where a sub-buffer can pass from one CPU
to another occur when it is exchanged between the pro-
ducer and the consumer and when it goes back from the
consumer to the producer, because the consumer may run
on a different CPU than the producer. Good care must
therefore be taken to ensure correct memory ordering be-
tween buffer management variables and the buffer data ac-
cesses. The condition which makes a sub-buffer ready for
reading is represented by Eqn. (2), which depends on the
read count and the commit seq counter corresponding to the
read count. Therefore, SMP systems allowing out-of-order
memory writes must write buffer data before incrementing
commit seq, by means of a write memory barrier. On the
read-side, a read memory barrier must be issued between
reading commit seq and its associated buffer data. It en-
sures correct read ordering of counter and buffer data.

LTTng buffering uses an optimization over the classic mem-
ory barrier model. Instead of executing a write memory
barrier before each commit seq update, a simple compiler
optimization barrier is used to make sure data written to
buffer and commit seq update happen in program order with
respect to local interrupts. Given that the write order is only
needed when the read-side code needs to check the buffer’s
commit seq value, Algorithm 6 shows how the read-side sends
an IPI to execute a memory barrier on the target CPU be-
tween two memory barriers on the local CPU to ensure that
memory ordering is met when the sub-buffer is passed from
the writer to the reader. This IPI scheme promotes the com-
piler barrier to a memory barrier each time the reader needs
to issue a memory barrier. Given the reader needs to issue
such a barrier only once per sub-buffer switch, compared to
a write memory barrier once per event, this improves per-
formance by removing a barrier from the fast path at the
added cost of an extra IPI at each sub-buffer switch, which
happens relatively rarely. With an average event size of
8 bytes and a typical sub-buffer size of 1 MiB, the ratio is
one sub-buffer switch each 131072 events. Given an IPI ex-
ecuting a write memory barrier on an Intel Core2 Xeon 2.0

GHz takes about 2500 cycles, and given that a write mem-
ory barrier takes 8 cycles, memory barrier synchronization
speed is increased by a factor 419 to 1.

When the buffer is given back to the producer, a synchro-
nized CAS is used to update the read count, which implies
a full memory barrier before and after the instruction. The
CAS ensures the buffer data is read before the read count is
updated. Given that the writer does not have to read any
data from the buffer and depends on reading the read count
value to check if the buffer is full (in discard mode), only the
read count is shared. The control dependency between the
test performed on read count and write to the buffer ensures
the writer never writes to the buffer before the reader has
finished reading from it.

4.5 Buffer allocation
The lockless buffer management algorithm found in LTTng

allows dealing with concurrent write accesses to slots (seg-
ments of a circular buffer) of variable length. This concur-
rency management algorithm does not impose any require-
ment on the nature of the memory backend which holds the
buffers. The present section will expose the primary mem-
ory backends supported by LTTng as well as the backends
planned for support in future versions.

The primary memory backend used by LTTng is a set of mem-
ory pages allocated by the operating system’s page alloca-
tor. Those pages are not required to be physically contigu-
ous. This ensures that page allocation is still possible even if
memory is fragmented. There is no need to have any virtu-
ally contiguous address mapping, which is preferable given
that there is a limited amount of kernel-addressable virtual
address space (especially on 32-bits systems). These pages
are accessed through a single-level page table which performs
the translation from a linear address mapping (offset within
the buffer) to a physical page address. Buffer read(), write()
and splice() primitives abstract the non-contiguous nature
of the underlying memory layout by providing an API which
presents the buffer as a virtually contiguous address space.

LTTng buffers are exported to user-space through the De-
bugFS file system. It presents the LTTng buffers as a set of
virtual files to user applications and allows interacting with
those files using open(), close(), poll(), ioctl() and splice()
system calls.

LTTng includes a replacement of RelayFS aimed at efficient
zero-copy data extraction from buffer to disk or to the net-
work using the splice() system call. Earlier LTTng implemen-
tations, using RelayFS, were based on mapping the buffers
into user-space memory to perform data extraction. How-
ever, this comes at the expense of wasting precious TLB en-
tries usually available for other use. The current LTTng im-
plementation uses the splice() system call. Its usage requires
creating a pipe. A splice() system call, implemented specif-
ically to read the buffer virtual files, is used to populate the
pipe source with specific memory pages. In this case, the
parts of the buffer to copy are selected. Then, a second
splice() system call (the standard pipe implementation) is
used to send the pages to the output file descriptor, which
targets either a file on disk or a network socket.

Separating the buffer-space management algorithm from the
memory backend support eases the implementation of spe-
cialized memory backends, depending on the requirements:

• Discontiguous page allocation (presented above) re-
quires adding a software single-level page table, but
permits allocation of buffers at run-time when mem-
ory is fragmented.

• Early boot-time page allocation of large contiguous
memory areas requires low memory fragmentation, but
permits faster buffer page access because it does not
need any software page-table indirection.

• Video memory backend can be used by reserving video
memory for trace buffers. It allows trace data to sur-
vive hot reboots, which is useful to preserve trace data
after a kernel crash.

5. EXPERIMENTAL RESULTS
This section presents the experimental results from the LTTng
implementation under various workloads, and compares these
with alternative existing technologies.

5.1 Methodology
To present the tracer performance characteristics, we first
measure the overhead of the LTTng tracer for various work-
loads on different system types. Then, we compare this over-
head to existing state-of-the-art approaches.

The probe CPU-cycles benchmarks, presented in section 5.2,
demonstrate the LTTng probe overhead in an ideal scenario,
where the data and instructions are already in cache.

Then, benchmarks representing real-life workloads, tbench
and dbench, simulate the load of a Samba server for network
traffic and for disk traffic, respectively. A tbench test on
loopback interface shows the worse-case scenario of 8 client
and 8 server tbench threads heavily using a traced kernel.
Scalability of the tracer when the number of cores increases
is tested on the heavy loopback tbench workload.

Yet another set of benchmarks uses lmbench to individually
test tracing overhead on various kernel primitives, mainly
system calls and traps, to show the performance impact of
active tracing on those important system components.

Finally, a set of benchmarks runs a compilation of the Linux
kernel 2.6.30 with and without tracing to produce a CPU
intensive workload.

Probe CPU-cycles overhead benchmarks are performed on
a range of architectures. Unless specified, benchmarks are
done on an Intel Core2 Xeon E5405 running at 2.0 GHz with
16 GiB of RAM. Tests are executed on a 2.6.30 Linux kernel
with full kernel preemption enabled. The buffers configura-
tion used for high event-rate buffers is typically two 1 MiB
sub-buffers, except for block I/O events, where per-CPU
buffers of eight 1 MiB sub-buffers are used.

5.2 Probe CPU-cycles overhead
This test measures the cycle overhead added by LTTng probes.
This provides us with a per-event overhead lower bound.

Architecture Cycles Core freq. Time
(GHz) (ns)

Intel Pentium 4 545 3.0 182
AMD Athlon64 X2 628 2.0 314
Intel Core2 Xeon 238 2.0 119
ARMv7 OMAP3 507 0.5 1014

Table 1: Cycles taken to execute a LTTng 0.140 probe,
Linux 2.6.30

Test
Tbench
output

Overhead
Trace
output

(MiB/s) (%) (KEvents/s)
Mainline Linux 12.45 0 –
Instrumented 12.56 0 –
Flight recorder 12.49 0 104
Tracing to disk 12.44 0 107

Table 2: tbench client network throughput tracing
overhead

This is considered a lower-bound because this test is per-
formed in a tight loop, therefore favoring cache locality. In
standard tracer execution, the kernel usually trashes part of
the data and instruction caches between probe executions.

The number of cycles consumed by calling a probe from
a static instrumentation site passing two arguments, a long
and a pointer, on Intel Pentium 4, AMD Athlon, Intel Core2
Xeon and ARMv7 is presented in Table 1. These bench-
marks are done in kernel-space, with interrupts disabled,
sampling the CPU time-stamp counter before and after loop-
ing 20,000 times over the tested case.

Given that one LCAS is needed to synchronize the tracing
space reservation, based on the results published in [Desnoy-
ers and Dagenais 2010], we can see that disabling interrupts
instead of using the LCAS would add 34 cycles to these probes
on Intel Core2, for an expected 14.3% slowdown. Therefore,
not only is it interesting to use local atomic operations to pro-
tect against non-maskable interrupts, but it also improves
the performance marginally. Changing the implementation
to disable interrupts instead of using LCAS confirms this:
probe execution overhead increases from 240 to 256 cycles,
for a 6.6% slowdown.

5.3 tbench
The tbench benchmark tests the throughput achieved by the
network traffic portion of a simulated Samba file server work-
load. Given it generates network traffic from data located in
memory, it results in very low I/O and user-space CPU time
consumption, and very heavy kernel network layer use. We
therefore use this test to measure the overhead of tracing on
network workloads. We compare network throughput when
running the non instrumented mainline Linux kernel, the in-
strumented kernel (with inactive tracing), the traced kernel
in flight recorder mode (events overwritten in memory), and
tracing to disk in discard mode.

This set of benchmarks, presented in Table 2, shows that
tracing has very little impact on the overall performance
under network load on a 100 Mb/s network card. 8 tbench

client threads are executed for a 120s warm up and 600s test

Test
Tbench
output

Overhead
Trace
output

(MiB/s) (%) (KEvents/s)
Mainline Linux 2036.4 0 –
Instrumented 2047.1 -1 –
Flight recorder 1474.0 28 9768
Tracing to disk – – –

Table 3: tbench localhost client/server throughput
tracing overhead

execution. Trace data generated in flight recorder mode
reaches 0.9 GiB for a 1.33 MiB/s trace data throughput.
Data gathered in normal tracing to disk reaches 1.1 GiB.
The supplementary data generated when writing trace-data
to disk is explained by the fact that we also trace disk ac-
tivity, which generates additional events. This very little
performance impact can be explained by the fact that the
system was mostly idle.

Now, given that currently existing 1 Gb/s and 10 Gb/s net-
work cards can generate higher throughput, and given the
100 Mb/s link was the bottleneck of the previous tbench

test, Table 3 shows the added tracer overhead when tracing
tbench running with both server and client on the loopback
interface on the same machine, which is a worst-case sce-
nario in terms of generated throughput kernel-wise. This
workload consists in running 8 client threads and 8 server
threads.

The kernel instrumentation, when compiled-in but not en-
abled, actually accelerates the kernel for both cases shown
in Tables 2 and 3. This can be attributed to modification
of instruction and data cache layout. Flight recorder trac-
ing stores 92 GiB of trace data to memory, which represents
a trace throughput of 130.9 MiB/s for the overall 8 cores.
Tracing adds a 28% overhead on this workload. Needless
to say that trying to export such throughput to disk would
cause a significant proportion of events to be dropped. This
is why tracing to disk is excluded from this table. This type
of workload shows the importance of tracer flexibility, allow-
ing end-users to tweak the tracer configuration as required
to cope with high-throughput workloads.

5.4 Scalability
To characterize the tracer overhead when the number of
CPUs increases, we need to study a scalable workload where
tracing overhead is significant. The localhost tbench test ex-
hibits these characteristics. Figure 7 presents the impact of
flight recorder tracing on the tbench localhost workload on
the same setup used for Table 3. The number of active pro-
cessors varies from 1 to 8 together with the number of tbench
threads. We notice that the tbench workload itself scales
linearly in the absence of tracing. When tracing is added,
linear scalability is invariant. It shows that the overhead
progresses linearly as the number of processors increases.
Therefore, tracing with LTTng adds a constant per-processor
overhead independent from the number of processors in the
system.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 1 2 3 4 5 6 7 8

tb
en

ch
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

Number of cores

No tracing
With tracing

Figure 7: Impact of tracing overhead on localhost
tbench workload scalability

Test
Dbench
output

Overhead
Trace
output

(MiB/s) (%) (KEvents/s)
Mainline Linux 1334.2 0 –
Instrumented 1373.2 -2 –
Flight recorder 1297.0 3 2840
Tracing to disk 872.0 35 2562

Table 4: dbench disk write throughput tracing over-
head

5.5 dbench
The dbench test simulates the disk I/O portion of a Samba
file server. The goal of this benchmark is to show the tracer
impact on such a workload, especially for discard tracing to
disk.

This set of benchmarks, presented in Table 4, shows trac-
ing overhead on a 8 thread dbench workload. Tracing in
flight recorder mode causes a 3% slowdown on disk through-
put while generating 30.2 GiB of trace data into memory
buffers. Normal tracing to disk causes a 35% slowdown on
heavy disk operations, but lack of disk bandwidth is causing
a significant portion of trace events to be discarded.

Analysis of the buffer state in flight recorder mode shows
that 30.2 GiB worth of data was generated in 720 seconds,
for a sustained trace throughput of 43.0 MiB/s. In discard
mode, the trace is written to the same disk dbench is using.
The tracing throughput is therefore significant compared to
the available disk bandwidth. It comes without surprise that
only 23 GiB of trace data has been collected to disk in the
discard trace, with a total of 21.8 million events lost. This
trace size difference is caused both by the events lost (only
lost about 244 MiB of data, or 1%, given an average event
size of 12 bytes) and, mostly, to the behavior change gen-
erated by the added disk I/O activity for tracing. While
the system is busy writing large chunks of trace data, it is
not available to process smaller and more frequent dbench

requests. This nicely shows how the tracer, in discard mode,
can affect disk throughput in I/O-heavy workloads.

5.6 lmbench
The lmbench benchmarks test various kernel primitives by
executing them in loops. We use this test to appropriately
measure the tracer overhead on a per-primitive basis. Run-
ning lmbench on the mainline Linux kernel, flight recorder
and discard tracing kernels, helps understanding the perfor-
mance deterioration caused by tracing.

When running on a Intel Core2 Xeon E5405, the standard
lmbench 3.0 OS test generates 5.41 GiB of trace data with
the default LTTng instrumentation in 6 minutes for a through-
put of 150 MiB/s. When writing to disk the total trace size
reaches 5.5 GiB due to the added traced disk I/O overhead.

The “simple system call” test, which calls a system call with
small execution time in a tight loop, takes 0.1752 µs per
system call on the mainline Linux kernel. Compared to this,
it takes 0.6057 µs on the flight recorder mode traced kernel.
In fact, the benchmarks for flight recorder tracing and disk
tracing are very similar, because the only difference is the
CPU time taken by the lttd daemon and the added disk
I/O.

The “simple system call” slowdown is explained by the fact
that two sites are instrumented: system call entry and sys-
tem call exit. Based on measurements from Table 1, we
would expect each event to add at least 0.119 µs to the sys-
tem call. In reality, they add 0.215 µs each to the system
call execution. The reasons for this additional slowdown is
because supplementary registers must be saved in the sys-
tem call entry and exit paths and cache effects. The register
overhead is the same as the well-known ptrace() debugger
interface, secure computing and process accounting because
these and LTTng all share a common infrastructure to extract
these registers.

Some system calls have more specific instrumentation in
their execution path. For instance, the file name is ex-
tracted from the open() system call, the file descriptor and
size are extracted from the read() system call. The per-
formance degradation is directly related to the number of
probes executed. For the read() system call, the mainline
Linux kernel takes 0.2138 µs, when the flight recorder trac-
ing kernel takes 0.8043 µs. By removing the “Simple system
call” tracing overhead, this leaves a 0.1600 µs, which corre-
sponds to the added event in the read() system call.

The page fault handler, a frequently executed kernel code
path, is instrumented with two tracepoints. It is very impor-
tant due to the frequency at which it is called during stan-
dard operation. On workloads involving many short-lived
processes, page faults, caused by copy-on-write, account for
an important fraction of execution time (4% of a Linux ker-
nel build). It runs in 1.3512 µs on the mainline Linux kernel
and takes 1.6433 µs with flight recorder activated. This in-
cludes 0.146 µs for each instrumentation site, which is close
to the expected 0.119 µs per event. Non-cached memory
accesses and branch prediction buffer pollution are possible
causes for such small execution time variation from expected
results.

Instrumentation of such frequently executed kernel code path
is the reason why minimizing probe execution time is critical

Test Time Overhead
Trace
output

(s) (%) (KEvents/s)
Mainline Linux 85 0 –
Instrumented 84 -1 –
Flight recorder 87 3 822
Tracing to disk 90 6 816

Table 5: Linux kernel compilation tracing overhead

to the tracer’s usability on heavy workloads.

Other lmbench results show that some instrumented code
paths suffer from greater overhead. This is mostly due to
use of a less efficient dynamic format-string parsing method
to write the events into the trace buffers. For instance, the
“Process fork+exit” test takes 211.5 µs to execute with trac-
ing instead of 177.8 µs, for an added overhead of 33.7 µs for
each entry/exit pair. Based on execution trace analysis of
standard workloads, as of LTTng 0.140, events corresponding
to process creation and destruction where not considered to
be frequently used compared to page faults, system calls,
interrupts and scheduler activity. If this becomes a concern,
the optimized statically-compiled version of the event seri-
alizer could be used.

5.7 gcc
The gcc compilation test aims at showing the tracer impact
on a workload where most of the CPU time is spent in user-
space, but where many short-lived processes are created.
Building the Linux kernel tree is such a scenario, where make
creates one short-lived gcc instance per file to compile. This
therefore shows mostly tracer impact on process creation.
This includes page fault handler instrumentation impact,
due to copy-on-write and lazy page population mechanisms
when processes are created and when executables are loaded.
This also includes instrumentation of scheduler activity and
process state changes.

Table 5 presents the time taken to build the Linux kernel
with gcc. This test is performed after a prior cache-priming
compilation. Therefore, all the kernel sources are located in
I/O buffer cache.

Tracing the kernel in flight recorder mode, with the de-
fault LTTng instrumentation, while compiling the Linux ker-
nel, generates 1.1 GiB of trace data for a 3% slowdown.
The results show, without surprise, that kernel tracing has
a lower impact on user-space CPU-bound workloads than
I/O-bound workloads. Tracing to disk generates 1.3 GiB of
data output. This is higher than the trace data generated
for flight recording due to the supplementary disk activity
traced. Trace throughput, when tracing to disk, is lower
than flight recorder mode, because the tracer disk activity
generates fewer events per second than kernel compiling in
the CPU time it consumes, hence reducing the number of
events per second to record.

5.8 Comparison
Previous work on highly scalable operating systems took
place at IBM Research resulting in the K42 operating sys-
tem [Krieger et al. 2006], which includes a built-in highly

Architecture IRQ-off Lockless Speedup
(ns) (ns) (%)

Intel Pentium 4 212 182 14
AMD Athlon64 X2 381 314 34
Intel Core2 Xeon 128 119 7
ARMv7 OMAP3 1108 1014 8

Table 6: Comparison of lockless and interrupt dis-
abling LTTng probe execution time overhead, Linux
2.6.30

scalable kernel tracer based on a lockless buffering scheme.
As presented in Section 2, K42’s buffering algorithm contains
rare race conditions which could be problematic, especially
given LTTng buffer and event size flexibility. Being a research
operating system, K42 does not support CPU hotplug, nor
distributing tracing overhead across idle cores, and is limited
to a subset of existing widely used hardware, which provides
a 64-bit cycle counter synchronized across cores.

The instrumentation used in LTTng has been taken from the
original LTT project [Yaghmour and Dagenais 2000]. It con-
sists of about 150 instrumentation sites, some architecture-
agnostic, others being architecture-specific. They have been
ported to the “Linux Kernel Markers” [Corbet 2007a] and
then to “Tracepoints” [Corbet 2008] developed as part of
the LTTng project and currently integrated in the mainline
Linux kernel. The original LTT and earlier LTTng versions,
used RelayFS [Zanussi et al. 2003] to provide memory buffer
allocation and mapping to user-space. LTTng re-uses part of
the splice() implementation found in RelayFS.

To justify the choice of using static code-level instrumenta-
tion instead of dynamic, breakpoint-based instrumentation,
we must explain the performance impact of breakpoints.
These are implemented with a software interrupt triggered
by a breakpoint instruction temporarily replacing the orig-
inal instructions to instrument. The specialized interrupt
handler executes the debugger or the tracer when the break-
point instruction is executed. An interesting result of the
work presented in this paper is that the LTTng probe takes
less time to run than a breakpoint alone. Tests running
an empty Kprobe (which includes a breakpoint and single-
stepping) in a loop shows it has a performance impact of
4200 cycles, or 1.413 µs, on a 3 GHz Pentium 4. Compared
to this, the overall time taken to execute an LTTng probe is
0.182 µs, which represents a 7.8:1 acceleration compared to
the breakpoint alone.

It is also important to compare the lockless scheme proposed
to an equivalent solution based on interrupt disabling. We
therefore created an alternative implementation of the LTTng
buffering scheme based on interrupt disabling for this pur-
pose. It uses non-atomic operations to access the buffer state
variables and is therefore not NMI-safe. Table 6 shows that
the lockless solution is either marginally faster (7–8%) on
architectures where interrupt disabling cost is low, or much
faster (34%) in cases where interrupt disabling is expensive
in terms of cycles per instruction.

Benchmarks performed on DTrace [Cantrill et al. 2004], the
Solaris tracer, on a Intel Pentium 4 shows a performance im-

pact of 1.18 µs per event when tracing all system calls to a
buffer. LTTng takes 0.182 µs per event on the same architec-
ture, for a speedup of 6.42:1. As shown in this paper, tracing
a tbench workload with LTTng generates a trace throughput
of 130.9 MiB/s, for approximately 8 million events/s with
an average event size of 16 bytes. With this workload, LTTng
has a performance impact of 28 %, for a workload execution
time of 1.28:1. DTrace being 6.42 times slower than LTTng,
the same workload should be expected to be slowed down by
180% and therefore have an execution time of 2.8:1. There-
fore, performance-wise, LTTng has nothing to envy [Corbet
2007b]. This means LTTng can be used to trace workloads
and diagnose problems outside of DTrace reach.

6. CONCLUSION
Overall, the LTTng kernel tracer presented in this paper has a
wide kernel code instrumentation coverage, which includes
tricky non-maskable interrupts, traps and exception han-
dlers, as well as the scheduler code. It has a per-event per-
formance overhead 6.42 times lower than the existing DTrace

tracer. The performance improvements are mostly derived
from the following atomic primitive characteristics: local
atomic operations, when used on local per-CPU variables,
are cheaper than disabling interrupts on many architectures.

The atomic buffering mechanism presented in this paper is
very useful for tracing. The good reentrancy and perfor-
mance characteristics demonstrated could be useful to other
parts of the kernel, especially drivers. Using this scheme
could accelerate buffer synchronization significantly and di-
minish interrupt latency.

A port of LTTng has already been done to the Xen hypervisor
and as a user-space library to study merged traces taken
from the hypervisor, the various kernels running in virtual
machines, and user-space applications and libraries.

7. ACKNOWLEDGMENTS
We would like to thank the Linux Trace Toolkit, Linux
and SystemTAP communities for their feedback, as well as
NSERC, Google, IBM Research, Autodesk and Ericsson for
funding parts of this work. We are indebted to Etienne
Bergeron and Robert Wisniewski for reviewing this paper.

8. REFERENCES
[Bligh et al. 2007] Bligh, M., Schultz, R., and

Desnoyers, M. 2007. Linux kernel debugging on
Google-sized clusters. In Proceedings of the Ottawa
Linux Symposium.

[Cantrill et al. 2004] Cantrill, B. M., Shapiro, M. W.,
and Leventhal, A. H. 2004. Dynamic instrumentation
of production systems. In USENIX. [Online]. Available:
http://www.sagecertification.org/events/

usenix04/tech/general/full_papers/cantrill/

cantrill_html/index.html. [Accessed: October 19,
2009].

[Corbet 2007a] Corbet, J. 2007a. Kernel Markers.
[Online]. Available: Linux Weekly News,
http://lwn.net/Articles/245671/. [Accessed: October
19, 2009].

[Corbet 2007b] Corbet, J. 2007b. On DTrace envy.
[Online]. Available: Linux Weekly News,

http://lwn.net/Articles/244536/. [Accessed: October
19, 2009].

[Corbet 2008] Corbet, J. 2008. Tracing: no shortage of
options. [Online]. Available: Linux Weekly News,
http://lwn.net/Articles/291091/. [Accessed: October
19, 2009].

[Desnoyers 2009] Desnoyers, M. 2009. Low-impact

operating system tracing. Ph.D. thesis, École
Polytechnique de Montréal. [Online]. Available:
http://www.lttng.org/pub/thesis/

desnoyers-dissertation-2009-12.pdf.

[Desnoyers and Dagenais 2006] Desnoyers, M. and
Dagenais, M. 2006. The LTTng tracer: A low impact
performance and behavior monitor for GNU/Linux. In
Proceedings of the Ottawa Linux Symposium.

[Desnoyers and Dagenais 2010] Desnoyers, M. and
Dagenais, M. R. 2010. Synchronization for fast and
reentrant operating system kernel tracing. Software –
Practice and Experience 40, 12, 1053–1072.

[Desnoyers et al. 2012] Desnoyers, M., McKenney,
P. E., Stern, A. S., Dagenais, M. R., and Walpole,
J. 2012. User-level implementations of Read-Copy
Update. IEEE Transactions on Parallel and Distributed
Systems (TPDS) 23, 2 (feb.), 375–382.

[Hillier 2008] Hillier, G. 2008. System and application
analysis with LTTng. [Online]. Available: Siemens Linux
Inside,
http://www.hillier.de/linux/LTTng-examples.pdf.
[Accessed: June 7, 2009].

[Krieger et al. 2006] Krieger, O., Auslander, M.,
Rosenburg, B., Wisniewski, R. W., Xenidis, J.,
Da Silva, D., and al. 2006. K42: building a complete
operating system. In EuroSys ’06: Proceedings of the
2006 EuroSys conference. 133–145.

[Mavinakayanahalli et al. 2006] Mavinakayanahalli, A.,
Panchamukhi, P., Keniston, J., Keshavamurthy,
A., and Hiramatsu, M. 2006. Probing the guts of
kprobes. In Proceedings of the Ottawa Linux Symposium.

[McKenney 2004] McKenney, P. E. 2004. Exploiting
deferred destruction: An analysis of read-copy-update
techniques in operating system kernels. Ph.D. thesis,
OGI School of Science and Engineering at Oregon
Health and Sciences University. [Online]. Available:
http://www.rdrop.com/users/paulmck/RCU/

RCUdissertation.2004.07.14e1.pdf. [Accessed:
October 19, 2009].

[Prasad et al. 2005] Prasad, V., Cohen, W., Eigler,
F. C., Hunt, M., Keniston, J., and Chen, B. 2005.
Locating system problems using dynamic
instrumentation. In Proceedings of the Ottawa Linux
Symposium. [Online]. Available: http:

//sourceware.org/systemtap/systemtap-ols.pdf.
[Accessed: October 19, 2009].

[Wisniewski and Rosenburg 2003] Wisniewski, R. and
Rosenburg, B. 2003. Efficient, unified, and scalable
performance monitoring for multiprocessor operating
systems. In Supercomputing, 2003 ACM/IEEE
Conference. IEEE, 3–3.

[Wisniewski et al. 2007] Wisniewski, R. W., Azimi, R.,
Desnoyers, M., Michael, M. M., Moreira, J.,
Shiloach, D., and Soares, L. 2007. Experiences
understanding performance in a commercial scale-out
environment. In European Conference on Parallel
Processing (Euro-Par).

[Yaghmour and Dagenais 2000] Yaghmour, K. and
Dagenais, M. R. 2000. The Linux Trace Toolkit. Linux
Journal . [Online]. Available:
http://www.linuxjournal.com/article/3829.
[Accessed: October 19, 2009].

[Zanussi et al. 2003] Zanussi, T., Wisniewski, K. Y. R.,
Moore, R., and Dagenais, M. 2003. RelayFS: An
efficient unified approach for transmitting data from
kernel to user space. In Proceedings of the Ottawa Linux
Symposium. 519–531. [Online]. Available: http://www.

research.ibm.com/people/b/bob/papers/ols03.pdf.
[Accessed: October 19, 2009].

