
AN EFFICIENT ANALYSIS APPROACH FOR MULTI-CORE SYSTEM
TRACING DATA

Naser Ezzati-Jivan
Department of Computer and Software Engineering

Ecole Polytechnique de Montreal
Montreal, Canada

email: n.ezzati@polymtl.ca

Michel R. Dagenais
Department of Computer and Software Engineering

Ecole Polytechnique de Montreal
Montreal, Canada

Email: michel.dagenais@polymtl.ca

ABSTRACT
Trace data usually contains information about the under-
lying system execution such as running processes, mem-
ory usage, disk and file accesses and other runtime infor-
mation. However, this raw data is not what the system
administrators are looking for. For instance, in a multi-
core system, the system administrator may need to know
what is the utilization of each core or even what are the
performance bottlenecks of the system. This analytical in-
formation is not available directly from the trace data and,
in fact, is hidden behind the mountains of trace raw data.
The trace data needs to be analyzed to extract the valuable
information. Thus, efficient trace analysis tools and tech-
niques need to be developed to handle large trace data and
extract and provide useful and analytical information. In
this paper, we propose a stateful trace analysis and abstrac-
tion approach that shares the computation and storage of
the common information between parallel abstraction pro-
cesses. This technique leads to relatively simple patterns
compared to other pattern-based techniques. Furthermore,
since it computes and stores the common state once, shared
between related processes, it has a better computation and
storage efficiency than stateless methods. The architecture
of the method, its applications, and evaluation are detailed
in this paper.

KEY WORDS
kernel tracing, trace analysis, data abstraction, pattern
matching, stateful approach

1 Introduction

Execution traces are increasingly used to analyze system
runtime behavior among administrators and analysts. Trace
files, especially the kernel traces, usually contain valuable
information of the system execution such as running pro-
cesses, file and disk operations, memory management, etc.
This information can be used to reason about the system
execution at runtime and can also be used to identify the
system bugs and problems. However, the tracing data may
contain a large number of events, even for a short tracing
period, which makes analysis difficult. Moreover, this data
is full of the low level system calls that complicate the read-
ing and understanding.

Normally, it is appropriate for analysts to look at rela-
tively abstract and high level events, which are more read-
able than the original data and reveal the same behavior but
at a higher level of the system execution. To generate such
abstract events efficiently, it is required to develop effec-
tive algorithms and tools that read trace events, detect simi-
lar and related sections, and generate meaningful synthetic
and high level events.

Several approaches have been reported for generating
abstract events and reducing the trace size [1, 2, 3, 4, 5].
These approaches usually use pattern-based techniques
such as pattern matching and pattern mining. Although
the pattern-based techniques are useful methods to extract
meaningful information from massive traces, they have
some weaknesses. The first problem is that, in the stud-
ied tools, the patterns are defined just over the trace events.
However, there are still other types of faults and synthetic
events that are difficult to detect with this technique, and
need more information about the system resources. In other
words, there is valuable information hidden behind the sys-
tem state that can be gathered directly from the execution
traces and can be used, in addition to the events, as inputs
for the pattern-based techniques.

Moreover, in the most pattern-based trace abstrac-
tion approaches, patterns are analyzed separately without
sharing common information (e.g. common system state).
Since their patterns mostly examine events belonging to a
small set of the system processes and resources, it should
be possible to share internal states between different but re-
lated patterns. For example, by storing the open files in a
common state store, all processes and patterns could share
this information. However, in existing tools, each pattern
tries to describe separately such thing as an opened file.

The gathered state information can be modeled uni-
formly in such a way that it can be shared between all the
concurrent patterns. Without that, it has to be recreated and
recomputed for each pattern that requires this information.
For example, the state of a file (even is opened, read, writ-
ten or closed by a process) can be stored once and used by
any pattern that tries to work with that file. We named this
method "stateful trace abstraction". Stateful trace abstrac-
tion method uses a state database to store the intermediate
information, and state of the pattern matching engine. In
other words, this database contains all information required

by the analyzer to inspect efficiently the input events, group
them and generate high level meaningful information.

The proposed stateful approach has great applications
like supporting partial trace abstraction, simplifying the
patterns, reducing the storage space required to store and
manage the patterns, increasing the overall computation ef-
ficiency, and finally reducing the complexity of the trace
analyzer.

For evaluating the proposed method, trace generated
by Linux Trace Toolkit next generation (LTTng) [6] is used.
LTTng is a powerful, low impact and lightweight [7] open
source Linux tracing tool, that provides a detailed exe-
cution trace of kernel operations and user space applica-
tions. This trace contains data about running processes,
CPU scheduling, memory usage, file, disk operations, and
network packets [8].

The rest of the paper is organized as follows: after
discussing the related work, we explain the challenges of a
scalable, efficient and flexible trace abstraction technique.
Then, we present the architecture of the proposed frame-
work. Eventually, we will present experiences and eval-
uation of the system, and some outlook of related future
work.

2 Related Work

Using kernel trace data to analyze and monitor system exe-
cution is explained in [8, 9]. However, because of the trace
files size it is usually difficult to analyse the system run-
time behavior using execution trace data. Trace abstraction
techniques like filtering, sampling, compression, general-
ization and aggregation have been developed to remove the
noise, highlight the important elements, and generate high
level events, and, consequently, reduce the size of trace files
[1, 2, 3, 5].

Trace filtering and sampling remove redundant and
unnecessary information from the trace files, and highlight
events with some specified attributes. They can be based on
event timestamp, event type, event size, method name, pro-
cess name and also the priority or importance of an event
[10, 11].

Trace compression has two common forms: lossy and
lossless. A trace is compressed by finding similarities and
removing redundancies [12].

Generalization is the process of extracting common
features from two or more events, and combining them into
a generalized event [4]. We use generalization technique to
convert the operating system related events to more canon-
ical events. For example, the read, readv and pread64 sys-
tem calls generate events that can be generalized to a regu-
lar read operation.

Trace aggregation or grouping, aggregates sets of low
level events to a group of compound events using pattern
matching, pattern mining, pattern recognition and other
techniques. In these techniques, related events, participat-
ing in an operation, are grouped together to produce larger
events [13]. Trace aggregation is a broadly used method for

aggregating the trace events [1, 13, 14]. It combines groups
of similar events into compound events and, by eliminating
the unnecessary events, reduces the complexity of the input
trace [14].

Fadel et al. [1] and Wally et al. [2] use pattern match-
ing approach to abstract out the raw kernel events gath-
ered by LTTng Linux kernel tracer to generate higher level
events. The focus of the former is on generating a pattern
library; however, the latter is focused on creating a lan-
guage for defining the abstract event patterns and scenarios.
Matni et al. [3] used an automata-based approach over ker-
nel traces to detect problems like "escaping a chroot jail"
and "SYN flood attacks".

They use state machine language to describe the at-
tack patterns. Although they present useful examples and
applications of the trace abstraction in the system fault de-
tection field, their solution lacks the scalability to meet the
demands of sizeable trace sizes, and their work should be
optimized to support large traces. Moreover, since they use
disjoint patterns for generating the high level entities, for
large traces and for a large number of patterns, it will be
time-consuming to inspect all patterns separately.

Efficient evaluation of patterns has been studied in
several experiments [15, 16]. Productive evaluation of the
specified patterns is closely related to multiple-query opti-
mization in database systems [17, 16] that identifies com-
mon joins or filters between different queries. These stud-
ies are based on identification of sub-queries that can be
shared between distinct concurrent queries to improve the
computational efficiency. The idea of sharing the joint in-
formation and states has also been deployed by Agrawal
et al. [15]. They proposed an automaton model titled
”NFAb” for processing the event streams. They use the
concept of sharing execution states and storage spaces
among all the possible concurrent matching processes to
gain efficiency. However, applying this idea for kernel
trace data needs more investigations. We show how this
approach can be used to share storage and computation be-
tween different trace abstraction processes for traces that
are generated from the Linux kernel execution.

In the following chapter, we review some of these
challenges and limitations in detail.

3 Challenges of the kernel based trace ab-
straction techniques

Kernel based trace abstraction techniques usually face
some important challenges:

• representation of the patterns in a rich language,

• efficient evaluation of the patterns,

• discontinuities of the execution (because of the cpu
scheduling events),

• generality, scalability, and flexibility of the method.

Figure 1. Extracting execution path from kernel traces.

There are different languages for representing the fault sce-
narios and patterns in IDS (Intrusion Detection Systems)
systems, that can also be used in tracing tools as well
(e.g. automata-based languages, Imperative languages)
[18]. Regardless of the language, it is important to pro-
vide a tool that enables the analysts and pattern writers to
design the patterns and scenarios in a simple way, and with
less complexity. We will show that one of the results of
the proposed stateful approach is helping users to design
simpler patterns.

The second challenge is the efficiency of the method.
Most of the aforementioned methods, normally use dis-
joint patterns for the trace aggregation, and evaluate and
inspect each pattern separately, although, they typicallyuse
the same system resources. Sharing joint information and
states leads to simple and more efficient patterns. We use
a common state model to manage the shared states and in-
formation. Without an appropriate state model, many pat-
terns will simply attempt to recreate and recompute those
shared states and information, leading to degradation of the
overall method performance. The challenge here is mak-
ing the abstraction method efficient enough, and sharing as
much as possible the data and computations between the
different pattern matching processes. This challenge can
be addressed by using the stateful approach. The primar-
ily result of using a stateful trace abstraction approach is
increasing the speed of the pattern detection process. In
this case, the shared information will be extracted and cal-
culated once. Effective sharing of common states between
various matching processes allows storage and processing
costs to be reduced from the total number of patterns to
the distinct number of them. Comparison of the stateful
and stateless approach and other applications of the pro-
posed method will be shown in Applications and Experi-
ments section.

Another challenge, the discontinuous nature of the
Linux kernel execution, necessitates extracting the real ex-
ecution path from several execution chunks, for any high
level kernel trace analysis. Since the scheduling events split
an execution of a process in different executions chunks,
the execution path of a process in kernel is different than
its execution at user level. Figure 1 shows different execu-
tion paths for a user level operation, and the real extracted
path for the same operation from kernel traces.

The other challenge is making the solution as generic
as possible. By designing a tool, independent of the kernel
version and trace format, it would be possible to achieve
a generic abstraction tool that is not dependent on a spe-
cific version. Similarly, the approach must be scalable and

Figure 2. Architectural view of the stateful trace abstractor.

support different trace sizes. Designing a special external
memory based data structure allows us to support arbitrary
trace data size. Furthermore, it should be possible to gener-
ate arbitrary synthetic events, either for reducing the trace
size or detecting the system problems and attacks. We show
that using different kinds of patterns and following real ex-
ecution paths for the different process executions enables
us to generate various types of synthetic events.

4 Architecture

Figure 2 depicts the architecture of the proposed trace ab-
stractor. In the following, we explain its different modules.

Event Mapper

In the Linux kernel, there is often no single way to im-
plement some user space operations. Thus, by categoriz-
ing the events for similar and overlapping functionalities,
we achieve a new set of semantic events that hide the ker-
nel concepts for these operations [4]. For example, both
the sys_open and sys_dup Linux system calls are used to
open a file. We define a new semantic "Open File" event
instead of the events for those two system calls. The rea-
son we use the semantic event notion is that it makes the
trace abstractor method generic and independent of a spe-
cific kernel version and trace format. The event mapper
is used to convert the input raw events to environment-
independent semantic events. The relationship between
raw and semantic events is actually n:m, which means that
a raw event or a group can be converted to one or more se-
mantic events. For example, a Linux_sched_schedule(p1,
p2) event can be mapped into two, process_stop(p1) and
process_running(p2), semantic events.

State Database

As discussed earlier, it is essential to use the system state
values, in addition to the events, to generate complex ab-
stract events. Although state values are extracted from
trace events, storing and using them can help for detect-
ing complex patterns in an efficient way. For that, a state
database, named "modeled state" is used to store the state

values. This database contains the state values of the re-
sources that are required by the synthetic events patterns,
such as execution status of a process (running, blocked,
waiting), mode of a CPU, various state values of file de-
scriptors, disks, memory, locks, etc., for different areasof
the trace. In this method, we use the modeled state to store
both the system state, as well as the state machines inter-
mediate states. Based on this idea, common methods are
used for storing, retrieving, and exploring both state types.

Synthetic Event Generator

Synthetic event generator is the core of the system. It ac-
cepts the pattern library, modeled state, and also the trace
events as inputs, parses them, looks for patterns in the
trace events, and finally generates a hierarchy of abstract
events. In this project, State Machine Language is selected
to describe the patterns, because of its expressiveness and
simplicity. In addition, it is visually friendly and domain-
independent [19]. It has also been used to define several
attack scenarios in STATL [19] that can be converted to our
format, and can be used in our project. The synthetic event
generator uses patterns of semantic events and system state
values to generate synthetic events. Previously generated
synthetic events may be passed again through the synthetic
event generator, which then can be used to generate com-
plex higher level events. For example, one can generate "A
file download" synthetic event from a sequence of several
"reading from a HTTP connection" and "writing to a file"
synthetic events.

The output of this module is a set of high level syn-
thetic events that can be displayed in the user interface.
They also may be sent again to the analyzer to participate
in the other phases of the trace abstraction. The defined
patterns may generate alerts representing the existence of
a potential misbehavior or an attack on the system. These
alerts are subsequently sent to the system administrator or
any predefined monitoring system.

The proposed module generates abstract events at
three levels:

• kernel level abstract events: these events are generated
using pattern matching over lower level information.
Examples of these events are: "sequential file read",
"process fork", "port scan", "file download", "HTTP
connection", etc

• System problems and faults: this level includes the
events resulting from applying the fault identification
patterns. Examples of these events are: "hogging CPU
process", "inappropriate use of an application cache",
"denial of service attack attempt", "access to a re-
stricted file", etc.

• System execution statistics: this level contains statis-
tics of different system metrics. Examples are: "num-
ber of different event types", "IO throughput", "CPU
usage", etc.

Pattern Library

We developed a prototype pattern library that covers most
of the ordinary user operations and some system problems
patterns. By using this pattern library, we could extract var-
ious levels of file operations (sequential and non sequential
file read and write, etc.), network connections (e.g. TCP
connection, port scanning, etc.), and Process management
(process fork, process termination, etc.) from kernel exe-
cution trace events. It is also possible to detect a number of
system problems.

The proposed pattern library contains two general
types of patterns:

• Trace size reduction patterns: this type contains pat-
terns for reducing the size of the original trace. Linux
kernel uses several system calls to accomplish user
space operations. However, from users’ point of view,
some of them look similar. The synthetic event gen-
erator looks for patterns of the various system calls,
classifies and replaces them by high level entities.
Also, some filtering patterns are defined in the pattern
library. They are used to filter events that are often not
of interest and show page faults, kernel timers, etc.
Since kernel traces are full of low level information,
it is better to reduce the size using these types of pat-
terns before applying other types of fault identification
patterns.

• Fault identification patterns: this type contains pat-
terns for detecting system problems and faults. It uses
both the state values and events to detect system mis-
behavior. For example, a set of patterns is defined for
computing the system resources overloads. By keep-
ing track of the system load and usage (e.g. CPU us-
age, I/O throughputs, Memory usage, etc.) and aggre-
gating them per process, per user, per machine, and
also in different time intervals, it becomes possible to
check the resource loads against predefined threshold
values. The library also contains patterns for detect-
ing denial of service attacks, for instance SYN flood
attack, and process fork bomb attack. Further details
about the prototyped pattern library, and also the size
reduction results of applying these patterns, may be
found in [5].

5 Applications and experiments

We have implemented a Linux Java tool that read LTTng
trace files and applies the proposed techniques to create
high level synthetic events. It has been used to test the per-
formance of the proposed model with real trace data. For
this purpose, Linux Kernel version 2.6.38.6 is instrumented
using LTTng and the tests are performed on a 2.8 GHz sys-
tem with 6 GB RAM on kernel traces of different sizes.
To generate these trace files, some patterns like "fork bomb
detection", "port scan detection", "file access pattern" (e.g.
to check whether a file is accessed sequentially or not"),

"file IO overuse", "HTTP connection", "UDP connection",
"file download", etc. are used. Also, "grep -r", "wget -r",
"ls -R","nmap" and another developed "recursive process
forker" commands and tools are used to generate the re-
quired workload.

In the following, we discuss important features and
experimental results of the proposed approach.

Computational efficiency

As explained earlier, most of the studied approaches con-
sider patterns independently. However, they may use the
same base information. Also, the shared states have to be
gathered and stored separately, leading to wasted space and
long computation time.

By sharing the common states of the patterns, the
method computes and generates the shared states once
rather than for each pattern separately, leading to compu-
tational efficiency in the abstraction technique. In other
words, since the patterns are shared among different pro-
cesses, and analyzed together, they may share some com-
putations like redundant condition checking. Suppose that
there exists k coexisting patterns, each requires n compu-
tations, and the time required to perform each computation
is t. In this situation, Formula 1 and 2 show the evaluation
time for each pattern and for all patterns respectively in the
stateless mode.

EvalT ime(pi) = n ∗ t; (1)

EvalT ime_stateless(All) =
i=k∑

i=0

EvalT ime(pi) = k ∗ n ∗ t;

(2)

Now, suppose that the patterns share m computations.
In this case, the evaluation time for each pattern can be
obtained by Formula 3 given below:

EvalT ime(shared part) = m ∗ t

(3)

EvalT ime(non-shared part ofpi) = (n−m) ∗ t

Similarly, the evaluation time for all patterns can be
calculated by Formula 4:

Using the above formulas, computational efficiency
of the stateful method can be easily calculated using For-
mula 5:

Regarding Formula 5, for 20 concurrent patterns (k
= 20) where each contains 10 states, and computations of
four states are shared between all patterns, we gain 38 % in
computations time.

Please note that the above explained formulas are sim-
ply here to validate the experminetal results that are shown

Figure 3. Execution (pattern evaluation) time comparisons

Figure 4. Execution (pattern evaluation) time comparisons
for different number of coexisting patterns

in the Figures 3, 4, and 7 and will be explained in the fol-
lowing paragraphs.

Figure 3 compares the execution time of both the
shared state and separate state approaches for the different
kernel trace sizes.

The figure shows that the stateful approach is faster
than the stateless approach for different trace sizes. How-
ever, other factors may affect the results, such as the com-
plexity of patterns, and the number of coexisting patterns.
In this experiment, since we aim to compare the execution
time of two stateful and stateless approaches, we use the
same set of patterns for both approaches.

In another experiment, we fixed the size of the trace
to 2000 MB and tested the proposed method for various
numbers of coexisting patterns from 50 to 300. The results
are shown in Figure 4.

As shown in Figure 4, the method works better for
the larger number of coexisting patterns. This is explained
by the fact that with a large number of parallel patterns,
more common state will exist and be shared, leading to in-
crease the differences between the evaluation time required
for evaluating the patterns in the both solutions.

Storage efficiency

The stateful abstraction method uses a shared memory to
store the common intermediate states and information, as
shown in Figure 5. With this technique, since several pat-
terns do not need to store separately the shared states, less
storage is required. Figure 7 depicts a comparison of mem-

EvalT ime_stateful(All) = EvalT ime(shared part) +
i=k∑

i=0

EvalT ime(non-shared part ofpi)

= (m ∗ t) +

i=k∑

i=0

(n−m) ∗ t; (4)

= [m+ (n−m) ∗ k] ∗ t;

Computational Efficiency=
|EvalT ime_stateful(All)− EvalT ime_stateless(All)|

EvalT ime_stateless(All)

=
|EvalT ime_stateful(All)− EvalT ime_stateless(All)|

EvalT ime_stateless(All)
;

(5)

=
|(m+ (n−m) ∗ k) ∗ t− (k ∗ n ∗ t)|

k ∗ n ∗ t
;

=
m ∗ (k − 1)

n ∗ k
;

Figure 5. Shared storage for common data.

ory usage for both the stateful and stateless approaches.
As shown in Figure 7, the stateful approach uses less

memory to store the intermediate states. Indeed, in the
stateless case, all the intermediate states are stored for each
pattern separately, leading to more memory usage.

Patterns complexity

The proposed abstraction method helps users to write sim-
pler patterns than with the other pattern based systems, for
mainly two reasons:

1. Semantic events allow pattern writers to develop

Figure 6. Memory usage comparisons

generic scenarios, i.e. patterns that are not specific
to a particular version of operating system or tracing
tool.

2. Furthermore, by using high level abstract events and
a modeled state system, the patterns become simpler.
Indeed, by sharing the common states and informa-
tion between patterns, the number of conditions is de-
creased and several calculations and condition check-
ing are replaced by a simple query to the shared state.
In other words, for the states that are shared between
a group of patterns, it suffices to refer them directly
instead of defining how to compute them separately.

As an example for the latter case, suppose that we
have a few patterns that require the list of open files to look

Figure 7. An example of sharing resources between pat-
terns

for special behavior of IO operations in the kernel trace files
(e.g. looking for IO overuses, or accesses to specific files
like /etc/passwd). In this example, each pattern can calcu-
late and keep track of a list of open files for itself. However,
using a shared open files list, makes it possible for the pat-
terns just to update and use the shared list, instead of han-
dling it separately. Sharing of the common parts decreases
the required calculations and therefore, the count of pat-
terns states, leading to have simpler patterns. In this case,
all redundant calculation parts of a pattern are replaced with
a simple referring to the shared database. Figure 7 depicts
the graphical view of this example.

Extracting execution path

Taking into account the execution path is essential for any
kernel based fault and attack detection. The CPU schedul-
ing operations split the execution of a process in different
execution chunks. For instance, suppose that you want
to detect and report any remote shells (as the purpose of
many buffer overflow attacks) executed by the Apache web
server. From kernel traces, it is not obvious to discover
which process is the "real" owner of the detected remote
shell. In the Linux kernel, when Apache (like any other
process) is forced to execute a shell, it firstly creates a new
process (possibly with a different name and PID) and then
executes a shell program within that process. Since many
pattern matching techniques use separate patterns match-
ing phases for separate processes [1, 2, 20], it will not be
possible to discover the main owner of the shell execution.
Instead, it will just detect a shell executed by the new pro-
cess and mark the new process as the owner. However, the
main owner is the Apache process. Therefore, it is impor-
tant for the detector to keep track of the execution path of a
process, in an efficient index, to extract on demand and per-
form correct pattern matching. Figure 1 shows a graphical

Figure 8. Partial trace abstraction in the stateful approach.

view of this example. This feature is one of the important
results of the proposed method and can be used to detect
complex attack types and system problems.

Partial trace abstraction

The other application of the proposed stateful method is
being able to perform partial trace abstraction. The method
supports partial trace abstraction, which makes users able
to seek, go back and forth in the trace, select an area and
abstract out the trace events lying within the selected time
area. For instance, suppose we see there is a high load at
a specific time, we can jump to that area in the trace, load
the system state information and run the trace abstraction
algorithm for that given area to get meaningful and high
level understanding of the system execution. As shown in
Figure 8, for any given area, it suffices to load the state
values of the system at the starting point of the interval,
re-read and re-run the trace events until the end point, and
regenerate the abstract events without reading the previous
trace events.

6 Conclusion and future work

Execution traces can be used to analyze the system run-
time behavior and detect its bugs and problems. However,
the size of the trace may grow rapidly and complicate the
analysis. Trace abstraction technique is used to reduce the
trace size, generate high level meaningful events, and de-
tect system problems and misbehavior. As discussed in the
literature review, most of the trace abstraction approaches,
based on pattern matching and pattern recognition tech-
niques, consider and check the patterns separately. How-
ever, many patterns use the same base information, and it
is possible to compute and extract the common states only
once, and share and reuse these repeatedly.

We proposed an architecture for a stateful trace ab-
stractor, which uses a state database to manage and store
the common data, and uses it in generating the synthetic
events. Sharing information between different patterns re-
duces the computation effort required to compute the inter-
mediate states. It also decreases memory usage required to
process patterns. The memory usage and evaluation time
reduction will be significant in a large trace with numerous
coexisting processes and patterns. The performance results
of the proposed technique were presented, and compared

to the developed stateless approach.
Possible future work is to extend the detector engine

to use other methods like pattern mining to detect complex
system problems. Extending the pattern library for detect-
ing more system and network faults, and comparing the
solution with common IDS systems will be interesting to
investigate in the future.

Acknowledgment

The support of the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), Ericsson Software
Research, and Defence Research and Development Canada
(DRDC) is gratefully acknowledged.

References

[1] W. Fadel, “Techniques for the abstraction of system
call traces,” Master’s thesis, Concordia University,
2010.

[2] H. Waly, “A complete framework for kernel trace
analysis,” Master’s thesis, Laval University, 2011.

[3] G. N. Matni and M. R. Dagenais, “Operating system
level trace analysis for automated problem identifica-
tion,” The Open Cybernetics and Systemics Journal,
April 2011.

[4] U. Premchand,Intrusion Detection/Prevention Using
Behavior Specifications. PhD thesis, Stony Brook,
NY, USA, 2003.

[5] N. Ezzati-Jivan and M. R. Dagenais, “A stateful
approach to generate synthetic events from kernel
traces,” Advances in Software Engineering, April
2012.

[6] M. Desnoyers and M. R. Dagenais, “The lttng tracer:
A low impact performance and behavior monitor for
gnu/linux,” in OLS (Ottawa Linux Symposium) 2006,
pp. 209–224, 2006.

[7] N. Sivakumar and S. S. Rajan, “Effectiveness of
tracing in a multicore environment,” Master’s thesis,
Malardalen University, 2010.

[8] F. Giraldeau, J. Desfossez, D. Goulet, M. R. Dage-
nais, and M. Desnoyers, “Recovering system met-
rics from kernel trace,” inOLS (Ottawa Linux Sym-
posium) 2011, pp. 109–116, June 2011.

[9] K. Yaghmour and M. R. Dagenais, “Measuring and
characterizing system behavior using kernel-level
event logging,” inProceedings of the annual con-
ference on USENIX Annual Technical Conference,
(Berkeley, CA, USA), pp. 2–2, USENIX Association,
2000.

[10] A. Malony, D. Hammerslag, and D. Jablonowski,
“Traceview: a trace visualization tool,”Software,
IEEE, vol. 8, pp. 19 –28, September 1991.

[11] H. Pirzadeh, S. Shanian, A. Hamou-Lhadj, and
A. Mehrabian, “The concept of stratified sampling
of execution traces,” inProgram Comprehension
(ICPC), 2011 IEEE 19th International Conference
on, pp. 225 –226, june 2011.

[12] A. Hamou-Lhadj and T. C. Lethbridge, “Compres-
sion techniques to simplify the analysis of large ex-
ecution traces,” inProceedings of the 10th Interna-
tional Workshop on Program Comprehension, IWPC
02, (Washington, DC, USA), pp. 159–, IEEE Com-
puter Society, 2002.

[13] R. Fonseca,Improving Visibility of Distributed Sys-
tems through Execution Tracing. PhD thesis, EECS
Department, University of California, Berkeley, Dec
2008.

[14] J. P. Black, M. H. Coffin, D. Taylor, T. Kunz, and
A. A. Basten, “Linking specification, abstraction, and
debugging,” tech. rep., Computer Communications
and Networks Group, University of Waterloo, 1994.

[15] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immer-
man, “Efficient pattern matching over event streams,”
in Proceedings of the 2008 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD
08, (New York, NY, USA), pp. 147–160, ACM, 2008.

[16] R. Zhang, N. Koudas, B. Chin, and O. D. Srivastava,
“Multiple aggregations over data streams,” inIn Proc.
ACM SIGMOD Int. Conf. on Management of Data,
pp. 299–310, 2005.

[17] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe, “Ef-
ficient and extensible algorithms for multi query opti-
mization,”SIGMOD Rec., vol. 29, pp. 249–260, May
2000.

[18] M. Couture, R. Charpentier, M. R. Dagenais, P.-M.
Fournier, G. Matni, and D. Toupin, “Monitoring and
tracing of critical software systems - state of the work
and project definition,” tech. rep., Defence Research
and Development Canada, dec 2008.

[19] S. Eckmann, G. Vigna, and R. Kemmerer, “Statl:
An attack language for state-based intrusion detec-
tion,” Journal of Computer Security, vol. 10, no. 1/2,
pp. 71–104, 2002.

[20] L. Alawneh and A. Hamou-Lhadj, “Pattern recogni-
tion techniques applied to the abstraction of traces of
inter-process communication,” inProceedings of the
2011 15th European Conference on Software Mainte-
nance and Reengineering, CSMR 11, (Washington,
DC, USA), pp. 211–220, IEEE Computer Society,
2011.

	Introduction
	Related Work
	Challenges of the kernel based trace abstraction techniques
	Architecture
	Applications and experiments
	Conclusion and future work

