
Performance Archetypes
Multi-Execution Critical Path Pattern Analysis

Kaveh Shahedi, Heng Li
Dorsal Progress Report Meeting – February 2026

Static Code

UST Traces

Kernel Resources

Holistic Performance Archetypes

DISCLAIMER
The term “Critical Path” does NOT
mean the usual thing in this work

(e.g., from Trace Compass)

2

The Universal ”Morning Commute”

CEO Student Worker

3

The Universal ”Morning Commute”

CEO Student Worker

Wake Up Breakfast Transit Coffee Work?

3

The Universal ”Morning Commute”

CEO Student Worker

Wake Up Breakfast Transit Coffee Work?

different inputs, different individuals, almost identical behavioral archetypes
3

Thousands of Movies, Yet
All Sharing Similar Patterns

4

Do Applications Have Personalities?

distinct codebases, universal execution language

OpenSSL FFmpeg SQLite 3 Zstandard

5

Triangulating the Personalities

6

Triangulating the Personalities

Static
Code

Analysis
LOC, Complexity

6

Triangulating the Personalities

Static
Code

Analysis
LOC, Complexity

UST
Tracing

Uftrace:
function calls

6

Triangulating the Personalities

Static
Code

Analysis
LOC, Complexity

UST
Tracing

Uftrace:
function calls

Kernel
Resources

LTTng:
CPU, Mem, I/O

6

Extracting Function Call Stack Critical Paths

Linearization Algorithm

Unified Critical Path

Thread 1

Thread 2

Thread 3

7

Extracting Function Call Stack Critical Paths

Linearization Algorithm

Unified Critical Path

Thread 1

Thread 2

Thread 3

We do this for the top-10
critical paths per execution

7

Extracting Function Call Stack Critical Paths

8

The Dataset

SQLite 3
(I/O & Compute
Mixed)

FFmpeg
(I/O Streaming)

Zstandard
(Memory & CPU)

OpenSSL
(CPU Heavy)

Inputs
500 per app

Iterations
3 per input

Total Paths
~50,000

9

RQ1: The Static-Dynamic Paradox?

10

Input A: Static
Complexity Score

(Sstatic)

LOC, Cyclomatic
Complexity, Nesting

RQ1: The Static-Dynamic Paradox?

1. Function A: 0.95 (very complex)
2. Function B: 0.88
3. Function C: 0.59
4. Function D: 0.30
5. Function E: 0.12 (very simple)

10

Input A: Static
Complexity Score

(Sstatic)

LOC, Cyclomatic
Complexity, Nesting

RQ1: The Static-Dynamic Paradox?

1. Function A: 0.95 (very complex)
2. Function B: 0.88
3. Function C: 0.59
4. Function D: 0.30
5. Function E: 0.12 (very simple)

10

Input B: Dynamic
Criticality Score

(Sdynamic)

Frequency on Critical
Path × Time

Input A: Static
Complexity Score

(Sstatic)

LOC, Cyclomatic
Complexity, Nesting

RQ1: The Static-Dynamic Paradox?

Input B: Dynamic
Criticality Score

(Sdynamic)

Frequency on Critical
Path × Time

1. Function A: 0.95 (very complex)
2. Function B: 0.88
3. Function C: 0.59
4. Function D: 0.30
5. Function E: 0.12 (very simple)

1. Function C: 0.99 (very critical, in all critical paths)
2. Function E: 0.91
3. Function B: 0.53
4. Function A: 0.48
5. Function D: 0.12 (not critical, rarely in critical paths)

10

Input A: Static
Complexity Score

(Sstatic)

LOC, Cyclomatic
Complexity, Nesting

RQ1: The Static-Dynamic Paradox?

1. Function A: 0.95 (very complex)
2. Function B: 0.88
3. Function C: 0.59
4. Function D: 0.30
5. Function E: 0.12 (very simple)

1. Function C: 0.99 (very critical, in all critical paths)
2. Function E: 0.91
3. Function B: 0.53
4. Function A: 0.48
5. Function D: 0.12 (not critical, rarely in critical paths)

Complex-but-Irrelevant

10

Input B: Dynamic
Criticality Score

(Sdynamic)

Frequency on Critical
Path × Time

Input A: Static
Complexity Score

(Sstatic)

LOC, Cyclomatic
Complexity, Nesting

RQ1: The Static-Dynamic Paradox?

1. Function A: 0.95 (very complex)
2. Function B: 0.88
3. Function C: 0.59
4. Function D: 0.30
5. Function E: 0.12 (very simple)

1. Function C: 0.99 (very critical, in all critical paths)
2. Function E: 0.91
3. Function B: 0.53
4. Function A: 0.48
5. Function D: 0.12 (not critical, rarely in critical paths)

Complex-but-Irrelevant

Simple-but-Critical

10

Input B: Dynamic
Criticality Score

(Sdynamic)

Frequency on Critical
Path × Time

Input A: Static
Complexity Score

(Sstatic)

LOC, Cyclomatic
Complexity, Nesting

RQ1: The Static-Dynamic Paradox?

Spearman
Correlation

(ρ)

11

Input B: Dynamic
Criticality Score

(Sdynamic)

Frequency on Critical
Path × Time

Input A: Static
Complexity Score

(Sstatic)

LOC, Cyclomatic
Complexity, Nesting

RQ1: The Static-Dynamic Paradox?

Spearman
Correlation

(ρ)
Rank

Comparison

11

Input B: Dynamic
Criticality Score

(Sdynamic)

Frequency on Critical
Path × Time

Input A: Static
Complexity Score

(Sstatic)

LOC, Cyclomatic
Complexity, Nesting

Static metrics explain only 11% of
runtime performance variance

11.0%
12

Static Complexity Rank (Normalized)
(0 = Least Complex, 1 = Most Complex)

Dy
na

m
ic

 C
om

pl
ex

ity
 R

an
k

(N
or

m
al

ize
d)

(0
 =

 L
ea

st
 C

rit
ic

al
, 1

 =
 M

os
t C

rit
ic

al
) 11.0%

Average variance explained
by the static metrics

Spearman Correlations

SQLite 3: -0.041 (zero)

FFmpeg: 0.175 (Weak)

Zstandard: 0.336 (Weak)

OpenSSL: 0.543 (Moderate)

13

Static Complexity Rank (Normalized)
(0 = Least Complex, 1 = Most Complex)

Dy
na

m
ic

 C
om

pl
ex

ity
 R

an
k

(N
or

m
al

ize
d)

(0
 =

 L
ea

st
 C

rit
ic

al
, 1

 =
 M

os
t C

rit
ic

al
)

Hidden
Bottlenecks

11.0%
Average variance explained
by the static metrics

Spearman Correlations

SQLite 3: -0.041 (zero)

FFmpeg: 0.175 (Weak)

Zstandard: 0.336 (Weak)

OpenSSL: 0.543 (Moderate)

13

Static Complexity Rank (Normalized)
(0 = Least Complex, 1 = Most Complex)

Dy
na

m
ic

 C
om

pl
ex

ity
 R

an
k

(N
or

m
al

ize
d)

(0
 =

 L
ea

st
 C

rit
ic

al
, 1

 =
 M

os
t C

rit
ic

al
)

Misleading
Complexity

11.0%
Average variance explained
by the static metrics

Spearman Correlations

SQLite 3: -0.041 (zero)

FFmpeg: 0.175 (Weak)

Zstandard: 0.336 (Weak)

OpenSSL: 0.543 (Moderate)

13

Hidden
Bottlenecks

The Paradox Functions

Low Complexity, but High Impact (7.3%)

The Assassin

High Complexity, but Low Impact (8.2%)

The Imposter

14

Static Complexity Rank (Normalized)
(0 = Least Complex, 1 = Most Complex)

Dy
na

m
ic

 C
om

pl
ex

ity
 R

an
k

(N
or

m
al

ize
d)

(0
 =

 L
ea

st
 C

rit
ic

al
, 1

 =
 M

os
t C

rit
ic

al
)

15

Raw Traces

Structural

Temporal

Resource

Feature
Extraction

(33 dimensions)
k-means
Clustering

Archetype 1

Archetype 2

Archetype 3

Archetype 4

Archetype 5

Archetypes

RQ2: Universal Performance Archetypes?

16

10 Universal Performance Archetypes

A0
CPU Burst

18.4% of paths.
Found in 2/4 apps.

A1
Universal
Transaction
23.2% of paths.
Found in 4/4 apps.

A2
Fast
Initialization
6.3% of paths.
Found in 4/4 apps.

A3
Deep SQL
Processing
4.7% of paths.
Found in 1/4 apps.

A4
Intensive
Compression
12.0% of paths.
Found in 3/4 apps.

A5
I/O Sync

1.6% of paths.
Found in 3/4 apps.

A6
Crypto
Primitives
8.8% of paths.
Found in 3/4 apps.

A7
Memory
Management
7.7% of paths.
Found in 4/4 apps.

A8
Growing
Mem. Pattern
2.2% of paths.
Found in 2/4 apps.

A9
Long Shallow
Computation
15.2% of paths.
Found in 2/4 apps.

17

10 Universal Performance Archetypes

A0
CPU Burst

18.4% of paths.
Found in 2/4 apps.

A1
Universal
Transaction
23.2% of paths.
Found in 4/4 apps.

A2
Fast
Initialization
6.3% of paths.
Found in 4/4 apps.

A3
Deep SQL
Processing
4.7% of paths.
Found in 1/4 apps.

A4
Intensive
Compression
12.0% of paths.
Found in 3/4 apps.

A5
I/O Sync

1.6% of paths.
Found in 3/4 apps.

A6
Crypto
Primitives
8.8% of paths.
Found in 3/4 apps.

A7
Memory
Management
7.7% of paths.
Found in 4/4 apps.

A8
Growing
Mem. Pattern
2.2% of paths.
Found in 2/4 apps.

A9
Long Shallow
Computation
15.2% of paths.
Found in 2/4 apps.

These 3 archetypes appear in every application studied.
They covered 37.2% of all critical paths.

18

Architectural DNA: Application Signatures

SQLite 3 OpenSSL Zstandard FFmpeg 19

Myth-Busting: Depth ≠ Duration

Stack Depth Duration
Deep Stack

(3.5x deeper) Slow Fast
(66x faster)Shallow

Performance
Contradiction

20

RQ3: Regression Detection?

Sanomaly = Spath + Sresource + Sarchetype + Sbounds

Path Signal

Structure and
sequence deviations.

Resource Signal

CPU/Memory/Disk
usage patterns.

Archetype Signal

Shifting archetype
during executions.

Bounds Signal

Violation of p99
statistical limits.

All signals have equal weights (i.e., 0.25), so the model avoids
the false positives of single-metric monitoring.

21

Regression Injection & Detection

Scenario:
CPU Bottleneck

(Math Overhead)

Scenario:
Memory Bloat
(Large Allocations)

Scenario:
I/O Contention

(Disk Writes)

Detection
Model

22

Context Matters!

50.4% Improvement

Precision
0.906

Recall
0.773

23

Every Signal Matters!
Ablation Study

Full Method F1: 0.83

w/o Archetype F1: 0.77

w/o Bounds F1: 0.72

w/o Resources F1: 0.71

w/o Path F1: 0.70

-7.3%

-13.2%

-14.5%

-15.6%

24

Executive Summary

1. The Paradox
Traditional static metrics like LOC or
Cyclomatic Complexity explain only
11.0% of runtime performance variance.

~16.0% of functions are “Paradox
Functions”, which are either hidden
bottlenecks or deceptive complexity

11% Explained

2. The DNAs
Critical paths are not random. They
may cluster into 10 Universal
Performance Archetypes (A0-A9).

Patterns like “Transaction” and
“Memory” appear in all tested apps,
showing a shared architectural DNA.

3. The Application
Multi-signal regression detection
outperforms resource-only
monitoring.

Driven by context-awareness of
the Critical Paths.

0.554 ↦ 0.834
Resource-Only F1 Multi Signal F1

Universal

25

