

Updates on Causality Analysis and Noise Detection in Log sequences and Software security vs Observability

Fateme Faraji Daneshgar

Polytechnique Montréal
DORSAL Laboratory

Agenda

- Updates on IIm-augmented causality analysis in log sequences
- Updates on noise log elimination
- Updates on software security mechanisms vs observability

Causality Analysis

identify **cause-and-effect relationships** between events, rather than simple correlations.

- **Correlation** answers: “*Which events tend to occur together?*”
- **Causality** answers: “*Which events directly influence or trigger others?*”

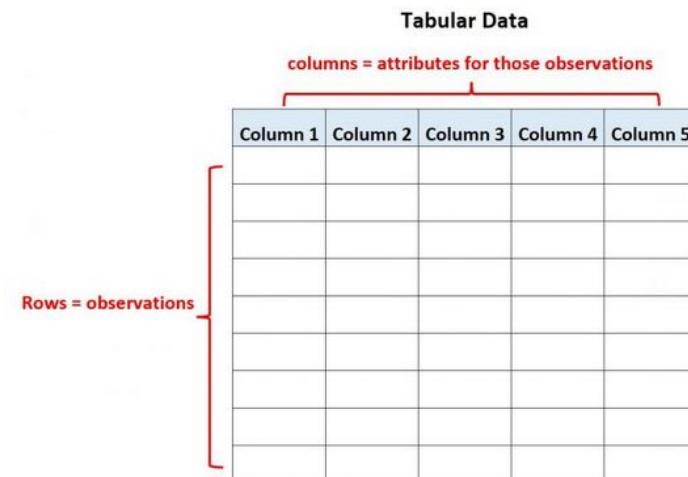
In the context of system logs:

- **Root cause identification**
- **Reduction of redundant alerts**
- **Better debugging and incident response**
- **Explainable models** for system behavior (who causes what, and why)

Traditional Causality Analysis approaches

1. Constraint-Based Methods

- PC algorithm, conditional independence tests
- Data is in **tabular form**
- **Limitation for Log Sequences**
 - Loss of temporal information
 - High number of columns (log templates)
 - Endless computations



Traditional Causality Analysis approaches

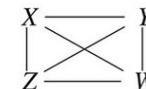
2. Time-Series-Based Methods

- Granger causality, temporal statistical models
- **Data** : Dense, regularly sampled time series
- **Limitation for Log Sequences: Sparsity**
 - Log events are often:
 - Irregular, Rare, Bursty
 - Many event pairs have **very few co-occurrences**

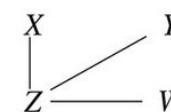
llm-augmented Causality Extraction

PC:

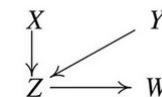
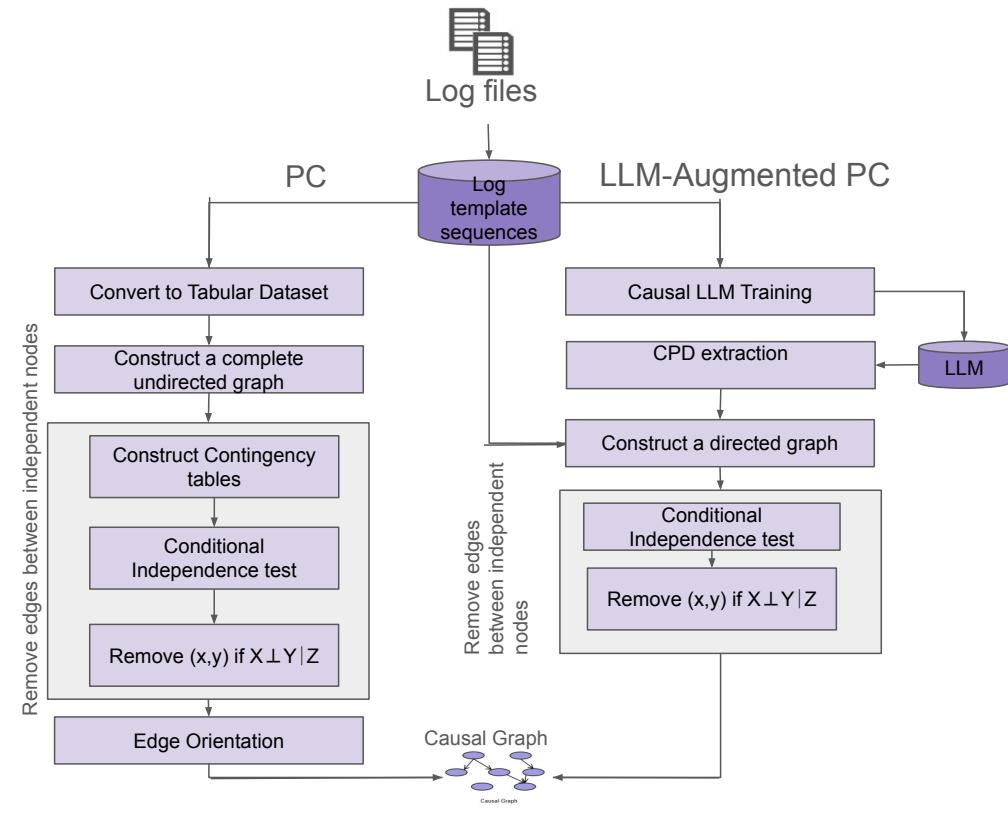
- Having 4 variables $\{X, Y, Z, W\}$



- If $X \perp\!\!\!\perp Y | Z$, remove the edge between X and Y



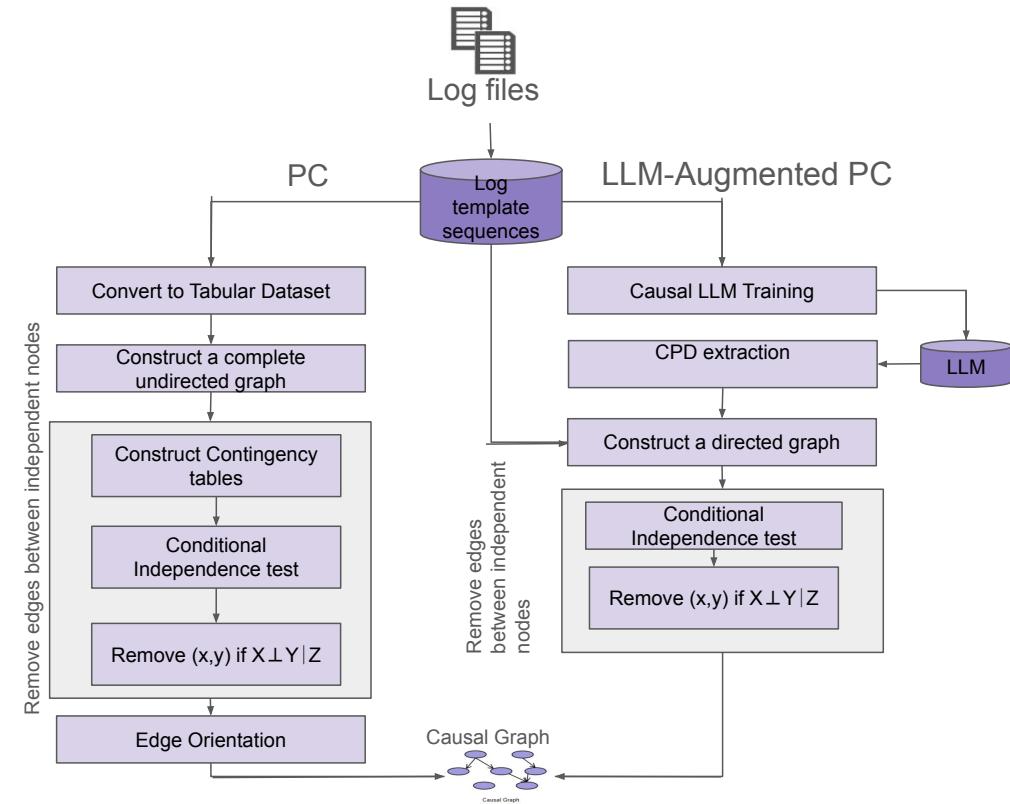
- Edge orientation using d-separation rules



llm-augmented Causality Extraction

Main Idea:

- Train a causal LLM directly on log sequences
- Extract conditional probability distributions (CPDs) from logits
- Eliminate data conversion



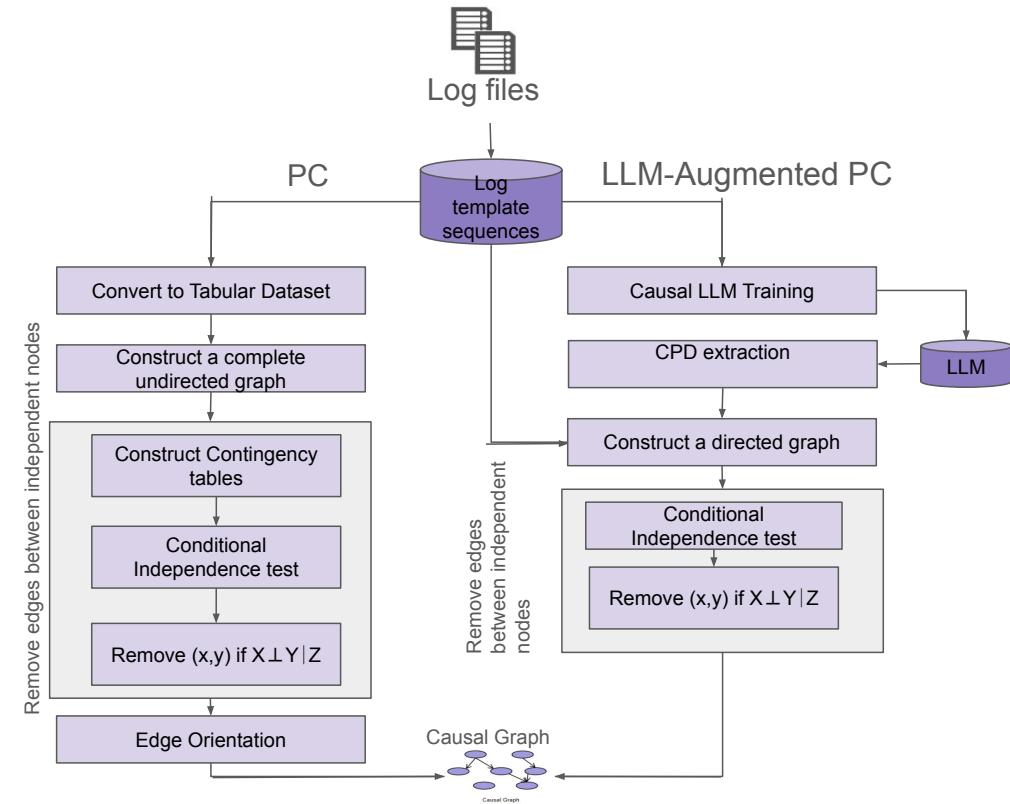
llm-augmented Causality Extraction

LLM-augmented PC

- A directed edge between X,Y if:

$$p(X | Y) \geq \tau$$

- Eliminating non-causal edge using conditional Independence Test



Train a causal LLM on log sequences

- **A Causal LLM (decoder only transformer)**

- predict the **next token** in a sequence given all **previous tokens**
- $P(x_t|x_1 x_2 \dots x_{t-1})$
- The model outputs **logits** for each possible token
- Logits are converted into **probabilities** via **softmax**

- **Training data**

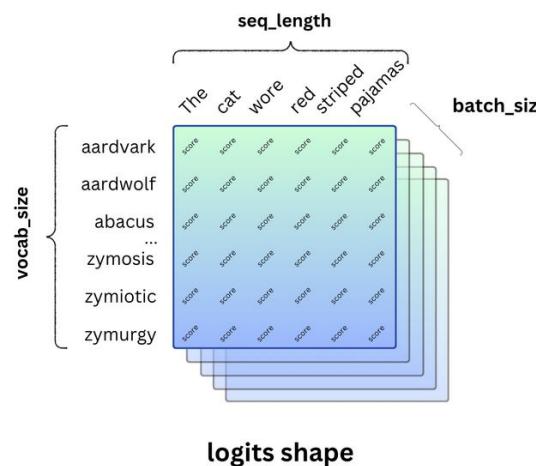
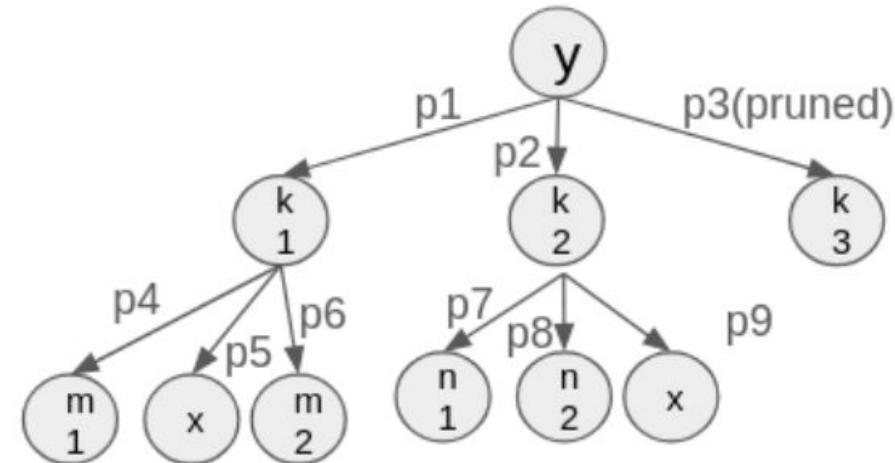
- Set of **log files**, each containing an order of **log lines**
- Each log line is a parsed log including **log template**
- We considered log templates
- Training data is a sequence set of log templates
- **Seq: T1, T2,Tn**

Extracting CPDs from LLM

- To compute $P(x|y)$:

$$P(x \mid y) = \sum_{\pi \in \mathcal{P}_{y \rightarrow x}} P(\pi)$$

$$P(\pi) = \prod_{i=1}^t P(x_{i+1} \mid x_1, \dots, x_i)$$



$$p(x|y) = (p1*p5)+(p2*p9)$$

Conditional Independence test

- Conditional Mutual Information test:

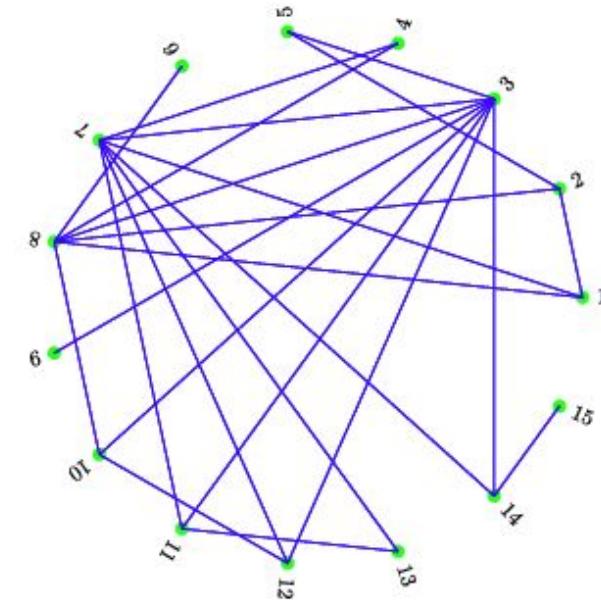
$$I(X;Y | Z) = \sum_{x,y,z} p(x,y,z) \log \frac{p(y | x, z)}{p(y | z)}.$$

$$I(X;Y | Z) = \sum_{x,y,z} p(z) p(x | z) p(y | x, z) \log \frac{p(y | x, z)}{p(y | z)}.$$

- Z all subsets of the set of variables occurring before both X and Y
- High value indicate knowing Y increase the probability of X even knowing Z

The role of Noise logs!

- Causal link + some links between highly connected noise
- Highly connected nodes—>Noise logs
- We eliminated highly connected nodes



Experimental Result

- Training Data:
 - 200,000 sequences, average length of 15
 - 1,487 unique template
 - 9 known causal links
- Scalability (the number of conditional independence tests)
 - PC:
 - Number of pairs (x,y) $\binom{n}{2} = \binom{1487}{2} = 1,104,841$
 - For each pair 2^{n-2}
 - 1.18×10^{453}
 - Our approach: 797 conditional independence tests

Experimental Result

- Detecting causal links (of 9)
 - PC : 1
 - Granger: 0
 - Our approach: 8

Method	Precision	Recall	F-1 Score
PC	0.01	0.11	0.2
Granger	0	0	0
LLM-Augmented PC	38.4	89	53.3

Extracting Causal Relations from Log Sequences Using Causal Language Models

Vithor Bertalan

Computer and Software Eng. Dept.

Polytechnique Montréal

Montréal, Canada

vithor.bertalan@polymtl.ca

Fateme Faraji Daneshgar

Computer and Software Eng. Dept.

Polytechnique Montréal

Montréal, Canada

fateme.faraji-daneshgar@polymtl.ca

Daniel Aloise

Computer and Software Eng. Dept.

Polytechnique Montréal

Montréal, Canada

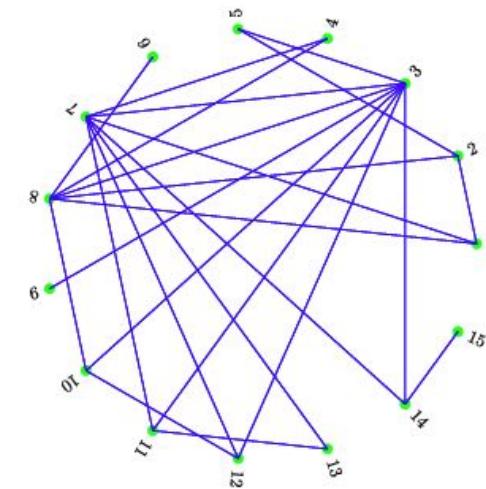
daniel.aloise@polymtl.ca

Abstract—Understanding causal relationships in system logs is crucial for diagnosing complex software behaviors. Traditional causality extraction methods fall into two categories: constraint-based and time-series-based. Constraint-based approaches, such

line could not have happened without the first. Therefore, we can conclude that there is a causal link between the two. It is important to highlight that the first messages might have

Updates on Noise log elimination

- Noise logs participate in **many** different error scenarios
- Clustering log sequences to obtain error scenarios
 - Each log file is a sequence of template ids
 - Similarity measure:
 - Number of shared templates/ number of all template in both lines
 - [1 3 6 4 8] and [3 5 8 9 1] ---- > 3/7

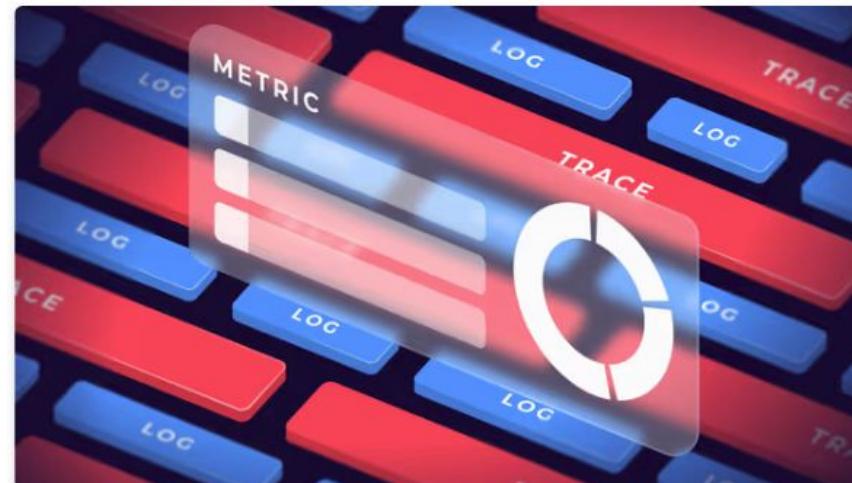


Updates on Noise log elimination

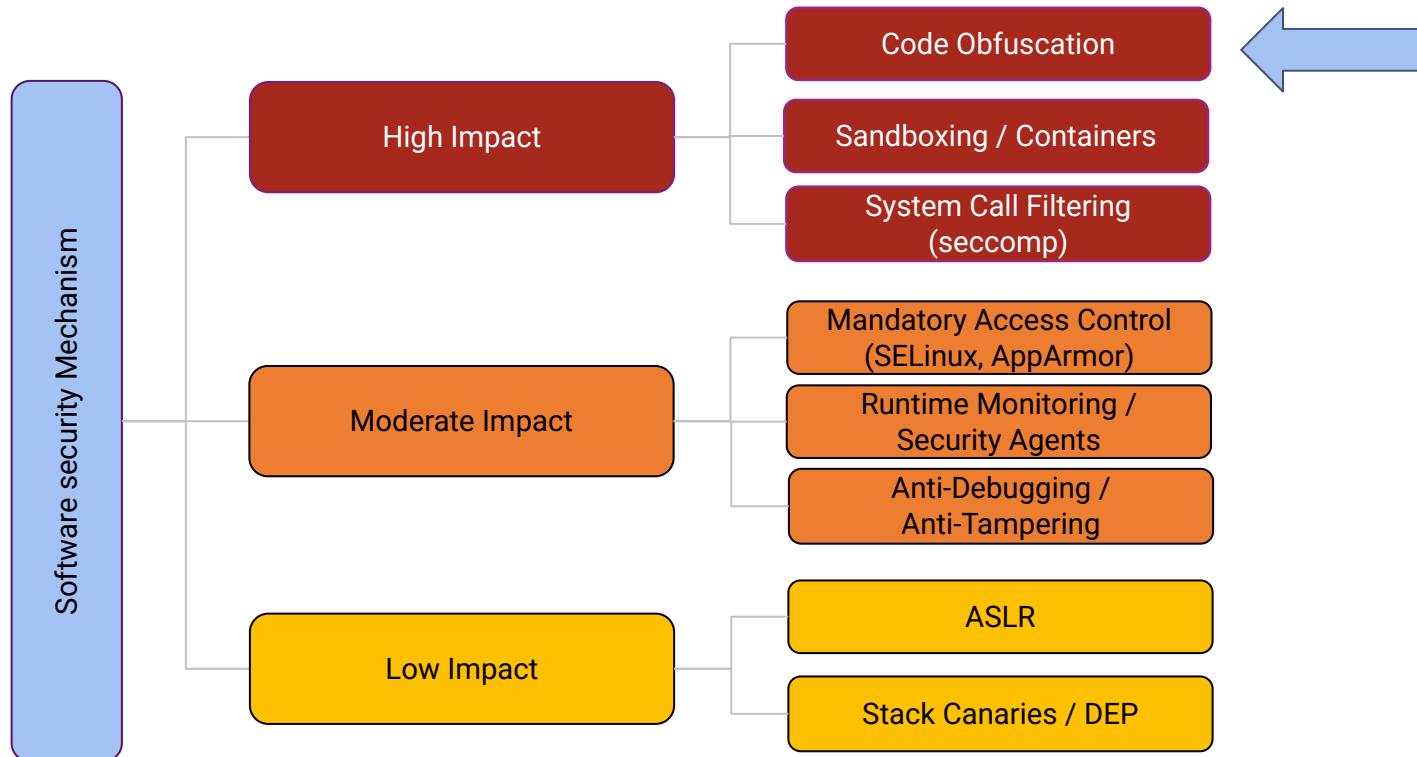
- Ground truth Dataset (7 : critical , 62: noise)
- Last results:
 - $TP = 7, FN = 0, FP = 48, TN = 14$
 - $Precision = Tp/Tp+Fp = 7/(7+48) = 12.7\%$
 - $Recall = Tp/Tp+Fn = 7/(7+0) = 100\%$
 - $F1 = 2(P*R/P+R) = 22.5 \%$
- updates:
 - $TP = 7, FN = 0, FP = 20, TN = 42$
 - $Precision = 26\%$
 - $Recall = 100\%$
 - $F1 = 41.2 \%$

Software Security Mechanisms and Observability

- Security mechanisms can **alter the behavior of software**
- These alterations affect **observable traces**, both at **user level** and **kernel level**
- Downstream applications like **regression detection**, **anomaly detection**, or **performance monitoring** rely on traces
- Goal: Understand **how security mechanisms impact trace fidelity and analysis accuracy**

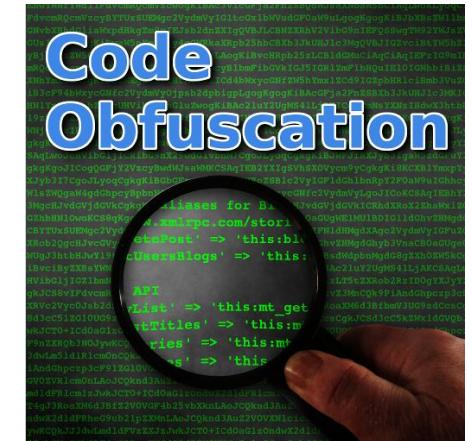


Software Security Mechanism



Code Obfuscation

- Protect software by making code
 - harder to understand
 - analyze
 - reverse engineer
 - while preserving functionality.
- Structural Obfuscation
- Control Flow Obfuscation
- Data Obfuscation
- Lexical / Layout Obfuscation
- Name and API Obfuscation



Evaluation

- Measuring the effects on user and kernel level traces
 - **Defining some measures**
 - **visually (flame graph in trace compass , ...)**
- Assessing the effects on a downstreaming task
 - **Regression detection**

Thank you for your attention!

fateme.faraji-daneshgar@polymtl.ca