Memory Sanitization for Native Applications
at the Binary Level

Adel Belkhiri

February 2, 2026

Polytechnique Montreéal

Agenda

©® Introduction

® MallocSan Design

° Post-Handler Deferring Optimization
° VSIB Addressing Support
° Multithreading Support

©® Overhead Evaluation
O Demo
O Future Work

POLYTECHNIQUE MONTREAL — Adel Belkhiri 2

MallocSan Evaluation Demo Future Work

Memory Access Safety

* Cand C++ expose raw memory to programmers, trading safety for
performance and control

* The explicit control over memory provides flexibility, at the cost of :

— Qut-of-band

— Use after free

Program critical error x|

The instuction at 0x0000000025C2E42B referenced
memory at 0x000000034D02F4. The memory could
not be read.

— Use before initialization
Click on OK to terminate the program

— M e m O ry Lea k Click on CANCEL to debug the program

POLYTECHNIQUE MONTREAL — Adel Belkhiri 3

MallocSan Evaluation Demo Future Work

Motivation

* Stack safety has improved through mature compiler-based defenses
(e.g., stack canaries, ASLR, CFI)

* Heap buffer overflows and use-after-free consistently rank among the
primary root causes of actively exploited vulnerabilities*

* Heap safety solutions are impractical in scenarios where recompilation
or full access to the source is impossible

° Proprietary or closed-source software
° Legacy binaries with unavailable build environments

° Third-party libraries and SDKs

* According to 2023 Known Exploited Vulnerabilities Report:
Link:_https://cwe.mitre.org/top25/archive/2023/2023 kev insights.html

POLYTECHNIQUE MONTREAL — Adel Belkhiri 4

Introduction Evaluation Demo Future Work

MallocSan Design (1)

* Heap pointers are tainted at allocation using wrapped malloc APIs

* Dereferencing a tainted pointer triggers a controlled Signal Handler
SIGSEGV fault e

Pre-handler

Check bounds
+
Untaint register

v

oLX

* Libpatch is invoked from MallocSan’s SIGSEGV handler
to patch the faulting instruction

Execute original instruction

v

Post-handler

* Handlers enforce access safety

° Pre-handler: validate the access and temporarily
untaint the pointer

Retaint register

° Post-handler: re-taint registers to restore protection

POLYTECHNIQUE MONTREAL — Adel Belkhiri)

Introduction Evaluation Demo Future Work

MallocSan Design (2)

I foo () { !
I int *ptr; :

~—— ptr = (int*) malloc (sizeof(int)); |

f_'_ * _ .
| } (ptr + 1) = 123; : Object Table
[
FE-- - === = - - - - - = ! index base address size alloc site
0x1 0x00005b49425332a0 4 foo()
Allocation) j

malloc returns a tagged pointer: TAG + REAL ADDR

v

Memory Access

mov DWORD PTR [rax + rbx], 123
o Instruction Table

\/

- fault @ arg_ml] arg_r(] disass
Segmentation Fault Interception
/ 0x55555650 1 0 mov DWORD PTR
[rax + rbx], 123
SIGSEGV handler
Libpatch \ 4
* - base | index | disp scale
rax rbx 0 0
Patch and Validation

Handlers are call <Pre-handler>
injected around mov DWORD PTR [rax + rbx], 123
the instruction call <Post-handler>

POLYTECHNIQUE MONTREAL — Adel Belkhiri 6

Introduction Evaluation Demo Future Work

Post-Handler Deferring Optimization (1)

* Executing a post-handler after every tainted memory access is expensive and
often unnecessary, as registers tend to remain unchanged over many instructions

* If the tainted register is overwritten in the next instructions, we can skip installing
a post-handler

call <pre>

mov [rax], v1

call <post> call <pre> call <pre>
mov [rax], vi mov [rax], v1

call <pre> mov [rax], v2 mov [rax], v2

mov [rax], v2 call <post> calbgpost>

call <post> mov rax, 5

mov rax, 5

POLYTECHNIQUE MONTREAL — Adel Belkhiri

Introduction Evaluation Demo Future Work

Post-Handler Deferring Optimization (2)

Algorithm 1 Defer Post-Handler

1: INIT
2: safeAddr < fault location
3: similarAccessCount < 0
4: BEGIN
5: for each next instruction do
6: if control-flow reached or (taint read / modified) then
7: return safeAddr
8: end if
9: if taint-independent then
10 if non-memory (and patchable) then
11: safeAddr < instruction address
12: end if
13: continue
14: end if
15: if fault-like memory access then
16: similarAccessCount < similarAccessCount + 1
17: continue
18: end if
19: if taint overwritten then
20: postHandler < false
21: return safeAddr
22: end if
23: end for
24: END

POLYTECHNIQUE MONTREAL — Adel Belkhiri 8

Introduction Evaluation Demo Future Work

VSIB (Vector Scaled Indexed Base)

A single instruction may perform multiple memory accesses (e.g.,
vgather¥*, vscatter¥®)

addr; = base + index; x scale + disp

* Vector instructions can be compiler-generated (-O3, -march=native,...) or
explicitly written using SIMD intrinsics

* SIMD intrinsics and VSIB semantics depend on the target ISA (e.g., AVX,
AVX-512)

* MallocSan generalizes memory safety from scalar to vector memory
access instructions

POLYTECHNIQUE MONTREAL — Adel Belkhiri 9

Introduction Evaluation Demo Future Work

VSIB (Vector Scaled Indexed Base)

Example

vgatherdps ymmO, [rdi + yynm1*4], ymm2

Where:
* rdi - base address
* ymm1 - vector of 32-bit indices
* 4 - scale factor

* ymmz2 - mask (per-lane enable)

POLYTECHNIQUE MONTREAL — Adel Belkhiri 10

Introduction Evaluation Demo Future Work

Multithreading

* Instruction table refactored as a lock-free hash table containing only
immutable metadata (index/base registers, displacement, scale, ...)

* Mutable runtime state such as register values and metadata updates
moved to thread-local storage

* Any thread may decode and patch a faulting instruction using a per-
thread Capstone context

* When multiple threads fault on the same instruction, one thread
initializes the instruction entry while the others wait for it to become
ready

* Object table redesigned as a lock-free Treiber stack

POLYTECHNIQUE MONTREAL — Adel Belkhiri 11

Introduction MallocSan Demo Future Work

Runtime Overhead

12

10 A

Fig. 1: Execution time slowdown
induced by MallocSan across SPEC
CPU 2017 applications

Execution Time Slowdown

[

S
o “qe,'l s

eps-‘en‘é g

eth
o™
ﬁq&e‘«' 631,63

g

Program

10.20 4

g
=)
|

10.15 4

™~
py
L

10.10 4

s
[N]
|

10.05 1

Execution Time Slowdown
™~
(=]
!

10.00 4

I
2}
L

9.95 A

Slowdown Factor (MallocSan / Baseline)

g
o
L

* 9.90 -

0 32 64 128 256 512 iﬁ ='1 :Ia l|6 3|2
Max Scan Thread Count

Fig. 2: Execution time slowdown of exchange2 as a function of Fig. 3: Memcached execution time slowdown as
the Max Scan param in the post-handler deferring algorithm the number of worker threads increases.

POLYTECHNIQUE MONTREAL — Adel Belkhiri 12

Introduction MallocSan Demo Future Work

Evaluation Results

* Instruction patching with the TRAP strateqgy significantly impacts MallocSan'’s
performance

* Libpatch’s Alias and Punning patching algorithms may overwrite consecutive
memory-access instructions

° Supporting overlapping patches in libpatch will improve significantly
MallocSan's performance

Libpatch conservatively saves the full execution context when invoking
handlers, including registers that are not always required

* Example: the unconditional saving of XMM registers contributes to
unnecessary overhead in MallocSan

POLYTECHNIQUE MONTREAL — Adel Belkhiri

13

Introduction MallocSan Evaluation Future Work

Demo

POLYTECHNIQUE MONTREAL — Adel Belkhiri 14

Introduction MallocSan Evaluation Demo

Future Work

* MallocSan is a binary-level memory sanitizer that does not require source
code access or recompilation

* While MallocSan’s current performance is acceptable, several
optimizations remain to be explored:

* Example: Cache instruction disassembly results to avoid repeatedly

disassembling the same instructions

* Re-evaluate MallocSan’s overhead on representative
multi-threaded applications

We welcome
all
suggestions
and feedbacR!

POLYTECHNIQUE MONTREAL — Adel Belkhiri

Questions?

https://github.com/adel-belkhiri/MallocSan

O

POLYTECHNIQUE MONTREAL — Adel Belkhiri

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

