
Memory Sanitization for Native ApplicationsMemory Sanitization for Native Applications
at the Binary Level at the Binary Level

Adel BelkhiriAdel Belkhiri

February 2, 2026February 2, 2026

 Polytechnique Montréal

POLYTECHNIQUE MONTREAL – Adel Belkhiri 2

Agenda

Introduction

MallocSan Design

◦ Post-Handler Deferring Optimization
◦ VSIB Addressing Support
◦ Multithreading Support

Overhead Evaluation

Demo

Future Work

1

2

3

4

5

POLYTECHNIQUE MONTREAL – Adel Belkhiri 3

● C and C++ expose raw memory to programmers, trading safety for
performance and control

● The explicit control over memory provides flexibility, at the cost of :

— Out-of-band
— Use after free
— Use before initialization
— Memory Leak
— Etc.

Memory Access Safety

IntroductionIntroduction MallocSan Evaluation Demo Future Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri 4

Motivation

● Stack safety has improved through mature compiler-based defenses
(e.g., stack canaries, ASLR, CFI)

● Heap buffer overflows and use-after-free consistently rank among the
primary root causes of actively exploited vulnerabilities*

● Heap safety solutions are impractical in scenarios where recompilation
or full access to the source is impossible

◦ Proprietary or closed-source software
◦ Legacy binaries with unavailable build environments
◦ Third-party libraries and SDKs

IntroductionIntroduction MallocSan Evaluation Demo Future Work

* According to 2023 Known Exploited Vulnerabilities Report:
Link: https://cwe.mitre.org/top25/archive/2023/2023_kev_insights.html

POLYTECHNIQUE MONTREAL – Adel Belkhiri 5

MallocSan Design (1)

● Heap pointers are tainted at allocation using wrapped malloc APIs

● Dereferencing a tainted pointer triggers a controlled
SIGSEGV fault

● Libpatch is invoked from MallocSan’s SIGSEGV handler
to patch the faulting instruction

● Handlers enforce access safety

◦ Pre-handler: validate the access and temporarily
untaint the pointer

◦ Post-handler: re-taint registers to restore protection

Introduction MallocSanMallocSan Evaluation Demo Future Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri 6

MallocSan Design (2)

Introduction MallocSanMallocSan Evaluation Demo Future Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri 7

Post-Handler Deferring Optimization (1)

● Executing a post-handler after every tainted memory access is expensive and
often unnecessary, as registers tend to remain unchanged over many instructions

● If the tainted register is overwritten in the next instructions, we can skip installing
a post-handler

Introduction MallocSanMallocSan Evaluation Demo Future Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri 8

Post-Handler Deferring Optimization (2)

Introduction MallocSanMallocSan Evaluation Demo Future Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri 9

VSIB (Vector Scaled Indexed Base)

● A single instruction may perform multiple memory accesses (e.g.,
vgather*, vscatter*)

addri​ = base + indexi​ × scale + disp

● Vector instructions can be compiler-generated (-O3, -march=native,...) or
explicitly written using SIMD intrinsics

● SIMD intrinsics and VSIB semantics depend on the target ISA (e.g., AVX,
AVX-512)

● MallocSan generalizes memory safety from scalar to vector memory
access instructions

Introduction MallocSanMallocSan Evaluation Demo Future Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri 10

VSIB (Vector Scaled Indexed Base)

Example

 vgatherdps ymm0, [rdi + ymm1*4], ymm2

Where:
● rdi base address→

● ymm1 vector of 32-bit indices→

● 4 scale factor→

● ymm2 mask (per-lane enable)→

Introduction MallocSanMallocSan Evaluation Demo Future Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri 11

Multithreading

● Instruction table refactored as a lock-free hash table containing only
immutable metadata (index/base registers, displacement, scale, …)

● Mutable runtime state such as register values and metadata updates
moved to thread-local storage

● Any thread may decode and patch a faulting instruction using a per-
thread Capstone context

● When multiple threads fault on the same instruction, one thread
initializes the instruction entry while the others wait for it to become
ready

● Object table redesigned as a lock-free Treiber stack

Introduction MallocSanMallocSan Evaluation Demo Future Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri

Runtime Overhead

12

Introduction MallocSan EvaluationEvaluation Demo Future Work

Fig. 3: Memcached execution time slowdown as
the number of worker threads increases.

Fig. 1: Execution time slowdown
induced by MallocSan across SPEC
CPU 2017 applications

Fig. 2: Execution time slowdown of exchange2 as a function of
the Max Scan param in the post-handler deferring algorithm

POLYTECHNIQUE MONTREAL – Adel Belkhiri

● Instruction patching with the TRAP strategy significantly impacts MallocSan’s
performance

● Libpatch’s Alias and Punning patching algorithms may overwrite consecutive
memory-access instructions

◦ Supporting overlapping patches in libpatch will improve significantly
MallocSan’s performance

• Libpatch conservatively saves the full execution context when invoking
handlers, including registers that are not always required

• Example: the unconditional saving of XMM registers contributes to
unnecessary overhead in MallocSan

13

Introduction MallocSan EvaluationEvaluation Demo Future Work

Evaluation Results

POLYTECHNIQUE MONTREAL – Adel Belkhiri 14

Introduction MallocSan Evaluation DemoDemo Future Work

Demo

POLYTECHNIQUE MONTREAL – Adel Belkhiri

● MallocSan is a binary-level memory sanitizer that does not require source
code access or recompilation

● While MallocSan’s current performance is acceptable, several
optimizations remain to be explored:

● Example: Cache instruction disassembly results to avoid repeatedly
disassembling the same instructions

● Re-evaluate MallocSan’s overhead on representative
multi-threaded applications

Future Work

15

We welcome
all

suggestions
and feedback!

Introduction MallocSan Evaluation Demo Future WorkFuture Work

POLYTECHNIQUE MONTREAL – Adel Belkhiri

Questions?
https://github.com/adel-belkhiri/MallocSan

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

