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Agenda

Introduction

MallocSan Design

◦  Post-Handler Deferring Optimization
◦  VSIB Addressing Support
◦  Multithreading Support

Overhead Evaluation
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● C and C++ expose raw memory to programmers, trading safety for 
performance and control

● The explicit control over memory provides flexibility, at the cost of :

—   Out-of-band
—   Use after free
—   Use before initialization
—   Memory Leak
—   Etc.

Memory Access Safety
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Motivation 

● Stack safety has improved through mature compiler-based defenses 
(e.g., stack canaries, ASLR, CFI)

● Heap buffer overflows and use-after-free consistently rank among the 
primary root causes of actively exploited vulnerabilities*

● Heap safety solutions are impractical in scenarios where recompilation 
or full access to the source is impossible

◦ Proprietary or closed-source software
◦ Legacy binaries with unavailable build environments
◦ Third-party libraries and SDKs
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* According to 2023 Known Exploited Vulnerabilities Report:
Link: https://cwe.mitre.org/top25/archive/2023/2023_kev_insights.html
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MallocSan Design (1) 

● Heap pointers are tainted at allocation using wrapped malloc APIs

● Dereferencing a tainted pointer triggers a controlled
SIGSEGV fault 

● Libpatch is invoked from MallocSan’s SIGSEGV handler
to patch the faulting instruction

● Handlers enforce access safety

◦ Pre-handler: validate the access and temporarily
untaint the pointer

◦ Post-handler: re-taint registers to restore protection
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MallocSan Design (2) 
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Post-Handler Deferring Optimization (1)

● Executing a post-handler after every tainted memory access is expensive and 
often unnecessary, as registers tend to remain unchanged over many instructions

● If the tainted register is overwritten in the next instructions, we can skip installing 
a post-handler
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Post-Handler Deferring Optimization (2)
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VSIB (Vector Scaled Indexed Base)

●  A single instruction may perform multiple memory accesses (e.g., 
vgather*, vscatter*)

addri​ = base + indexi​ × scale + disp

● Vector instructions can be compiler-generated (-O3, -march=native,...) or 
explicitly written using SIMD intrinsics 

● SIMD intrinsics and VSIB semantics depend on the target ISA (e.g., AVX, 
AVX-512)

● MallocSan generalizes memory safety from scalar to vector memory 
access instructions
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VSIB (Vector Scaled Indexed Base)

Example

                               vgatherdps ymm0, [rdi + ymm1*4], ymm2 

Where:
● rdi  base address→

● ymm1  vector of 32-bit indices→

● 4  scale factor→

● ymm2  mask (per-lane enable)→
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Multithreading

● Instruction table refactored as a lock-free hash table containing only 
immutable metadata (index/base registers, displacement, scale, …)

● Mutable runtime state such as register values and metadata updates 
moved to thread-local storage

● Any thread may decode and patch a faulting instruction using a per-
thread Capstone context

● When multiple threads fault on the same instruction, one thread 
initializes the instruction entry while the others wait for it to become 
ready

● Object table redesigned as a lock-free Treiber stack
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Runtime Overhead 
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Fig. 3: Memcached execution time slowdown as 
the number of worker threads increases.

Fig. 1: Execution time slowdown 
induced by MallocSan across SPEC 
CPU 2017 applications

Fig. 2: Execution time slowdown of exchange2 as a function of 
the Max Scan param in the post-handler deferring algorithm
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● Instruction patching with the TRAP strategy significantly impacts MallocSan’s 
performance

● Libpatch’s Alias and Punning patching algorithms may overwrite consecutive 
memory-access instructions

◦  Supporting overlapping patches in libpatch will improve significantly  
MallocSan’s performance

• Libpatch conservatively saves the full execution context when invoking 
handlers, including registers that are not always required

• Example: the unconditional saving of XMM registers contributes to 
unnecessary overhead in MallocSan
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Evaluation Results 



POLYTECHNIQUE MONTREAL – Adel Belkhiri 14
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Demo 
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● MallocSan is a binary-level memory sanitizer that does not require source 
code access or recompilation

● While MallocSan’s current performance is acceptable, several 
optimizations remain to be explored:

● Example: Cache instruction disassembly results to avoid repeatedly 
disassembling the same instructions

● Re-evaluate MallocSan’s overhead on representative 
multi-threaded applications

Future Work
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We welcome 
all 

suggestions 
and feedback!
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Questions?
https://github.com/adel-belkhiri/MallocSan
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